Наблюдения и моделиране на коронални ударни вълни и високоенергийни слънчеви частици

Камен Козарев

Харвард-Смитсониански център по астрофизика, Кеймбридж, Масачузетс (САЩ)







#### Коронално изхвърляне на маса в бяла светлина

 STEREO B
 Земя
 STEREO A

Наблюдения на 2010/04/03

#### Коронални изхвърляния на маса (СМЕ):

- Най-голямите експлозивни отделяния на маса и енергия в слънчевата система
- Резултат на реорганизацията на магнитните полета на слънчевата повърхност (короната)
- СМЕ-та смущават междупланетното пространство
- Често предизвикват силни ударни вълни
- Ударните вълни се смятат за отговорни за ускоряването на слънчеви високоенергийни частици (Solar Energetic Particles – SEP)

#### Защо короналните вълни са интересни?

- Свързвани са с големи потоци високоенергийни заредени частици край Земята.
- Solar Energetic Particles (SEP), или Слънчеви високоененергийни частици като протони, електрони, и йони с енергия над 1 MeV (1000 пъти по-висока от тази на слънчевия вятър)
- SEP могат да се образуват при

   Избухвания в бяла светлина (flares)
   Ударни вълни свързани с Коронални изхвърляния на маса (CME)
- Около 1% от СМЕ-та предизвикват опасни SEP-потоци
- Възможността за по-ранно предсказване на SEP-потоци може да помогне за предпазване на астронавти и сателитна електроника



# Предсказване на космическото врем

#### **Solar Energetic Particles (SEP):**

- Разпространяват се по междупланетни магнитни линии
- Могат да въздействат на планетарните системи
- Могат да причинят сериозни вреди на сателитната електроника
- Могат да предизвикат лъчева болест или рак при астронавти



# Какво знаем дотук?



# Въпроси

- Могат ли ударни вълни да се образуват ниско в короната (под 4-5 R<sub>s</sub>)?
- Какви наблюдения са нужни, за да опишем и изучаваме коронални ударни вълни и потоците енергийни частици с отдалечени наблюдения?
- Могат ли СМЕ-та и ударни вълни в ниската и средна корона (1.3-8 R<sub>s</sub>) да създадат SEP потоците, които наблюдаваме в близост до Земята?

# Коронални вълни



•Extreme Ultraviolet (EUV), или ултравиолетови вълни – открити през 1997 в телескопски наблюдения от сателита SoHO (снимки през 12 минути)

•Скорости от 100 до >1000 км/с

•Силна времева корелация с избухвания и СМЕ-та

# Коронални ултравиолетови вълни

#### Какво са те?

 "Звукови" вълни в короната, при които се образува рязка граница в параметрите на плазмата (плътност, скорост, магнитно поле, температура)

#### Какво ги предизвиква?

 Коронални изхвърляния на маса и/или слънчеви избухвания

#### Защо са интересни?

 Предполага се, че рязката смяна на плазмените параметри предизвиква ускорението на йони и електрони до много високи енергии

## Как наблюдаваме коронални вълни?

## Atmospheric Imaging Assembly (AIA)



Solar Dynamics Observatory

• Постоянно наблюдение на Слънцето

• Снимки в 6 EUV канала на всеки 12 секунди

DO/AIA- 171 20110402\_184313

image: http://sdowww.lmsal.com/suntoday/

# Параметри на Atmospheric Imaging Assembly (AIA)

 Прави изображения в 10 UV канала, 6 от които са EUV (почти в рентгеновата част на спектъра)

| Канал (Å) | Йон                | Район                       |
|-----------|--------------------|-----------------------------|
| 94        | Fe XVII            | Flares                      |
| 131       | Fe VIII, XX, XXIII | Flares                      |
| 171       | Fe IX              | Corona, Transition          |
| 193       | Fe XII, XXIV       | Corona                      |
| 211       | Fe XIV             | Active Region<br>Corona     |
| 304       | Не п               | Chromosphere,<br>Transition |
| 335       | Fe XVI             | Active Region<br>Corona     |



- По едно изображение всеки 12 сек!
- Предишните EUV телескопи снимат на 5 минути.

# Идентифициране на ударните вълни (I)

- Наблюдения над лимба са предпочитани.
- Това ни позволява да видим повече от структурата на вълните.



Слънчевият лимб



# Идентифициране на ударните вълни (II)

- Вълните на западния лимб са по-желани, понеже SEP-потоците • оттам са по-добре магнитно свързани със Земята
- Това ни помага при корелацията на слънчевите избухвания с SEP-потоци на Земята.



- Има и наблюдения извън земна орбита (STEREO). Това ни позволява да ползваме и телескопични наблюдения над източния лимб

# Идентифициране на ударните вълни (III)

• Наблюдават се и странични, и радиални движения при вълните.



#### Кандидат-вълни

- Прегледахме 31 месеца данни (януари 2011 юли 2013).
- Открихме 49 кандидат-вълни.
- От тях, избрахме 15 вълни над лимба.



Радио избухвания от тип II

- 8 вълни на Западния лимб. 8 вълни през 2011.
- 7 вълни на <mark>източния</mark> лимб.

- 8) 01/25/11 **E**
- 9) 01/28/11 W
- 10) 02/11/11
- 11) 10/20/11 W
- 12) 05/26/12 W
- 13) 10/07/12
- 14) 04/23/13 W
- 15) 05/01/13
- 5 вълни през 2012.
- 2 вълни през 2013

## Кинематика на вълните (I)



23<sup>ти</sup> април, 2013



- Искаме да определим скоростта и ускорението на вълната
- За да проследим вълната, завъртаме изображението

### Кинематика на вълните (II)



### Кинематика на вълните (III)



#### 11™ май, 2011

Initial Velocity:  $272.33 \text{ km/s} \pm 29.85 \text{ km/s}$ Final Velocity: 437.26 km/sAcceleration:  $0.343 \text{ km/s}^2 \pm 0.070 \text{ km/s}^2$ 

#### Резултатите досега

Радиални скорости и ускорения за 5 вълни

|    | Дата       | Крайна скорост (км/с) | Ускорение (м/с²) |
|----|------------|-----------------------|------------------|
| 1) | 04/23/13 W | 445.74                | 342.85           |
| 2) | 05/26/12 W | 697.69                | 5885.55          |
| 3) | 11/09/11 🗧 | 599.55                | 606.17           |
| 4) | 05/11/11 W | 437.26                | 343.61           |
| 5) | 08/04/11 W | 1480.70               | 6560.07          |

#### Проблеми

- 1 Нисък контраст на изображенията.
- 2 Не всички вълни имат радиален компонент на скоростта.

# Радио наблюдения - избухвания от тип II



- Слънчеви радио избухвания в 10-1000 MHz
- Корелират силно с короналните изхвърляния на маса
- Смятат се за индикация на присъствие на коронални ударни вълни – предизвикани от ускорени електрони

## Радио избухвания от тип II

- Излъчването става на плазмената честота w<sub>р</sub>
- Плазмената честота  $w_p$  определя електронната плътност:  $w_p \propto \sqrt{n_e}$
- Можем да свържем двете наблюдения чрез подходящ модел на плътността



# Радио и EUV наблюдения

Времева серия на EUVвълната

Времева серия на \_\_\_\_\_ радио-наблюденията Wave Tracker for e37 at 193: Rotated 0.00000 degrees











Достъпна технология за слънчеви радио телескопи Разширяваща се мрежа от станции Повече информация тук: www.ecallisto.org

## Ударната вълна на 13ти Юни 2010



• За около 5 минути вълната минава разстоянието между 1.3 и 1.6 Rs



МНz • Радио избухване от тип II

• Излъчването е пред и зад ударната вълна.

• Вълната се отдалечава от слънцето, където плътността е пониска, съответно честотата намалява.



- Скорости на короналната вълна от 650-700 км/с

-Отстоянията на EUVвълновия фронт следват радио излъчването

-EUV-фронтът съвпада с радиоизлючването

#### Как да определим дали вълната е ударна?

• Един начин е да използваме Диференциалната мярка на излъчването (Differential Emission Measure - DEM, Q(T)) – количество излъчващ материал в обем dV и температурен интервал dT

•DEM е пропорционално на квадратът на плътността

$$n_e^2 dV = Q(T)dT$$

•Можем да изчислим DEM от 6те EUV канала на AIA (Weber et al., 2004)
•Избрахме 4 района, изчислихме DEM за две времена (t<sub>1</sub>, t<sub>2</sub>) – преди и по време на вълната

 Пресмятаме съотношението на плътностите като разделим интегралите на DEM по температурата за двете времена

• Така не е нужно да знаем обемът в който е излъчването

$$\frac{n_{e2}}{n_{e1}} \sim \frac{\sqrt{EM_2}}{\sqrt{EM_1}} \sim \frac{\sqrt{\int Q_2(T) \mathrm{d}T}}{\sqrt{\int Q_1(T) \mathrm{d}T}}$$

 Смислени резултати от R2 и R3

• Съотношението на плътностите е  $r=n_{t2}/n_{t1}$ 

•For R2, r~1.18

•For R3, r~1.12

• Малко по-ниско от изчисленото чрез радио наблюдения – r~1.56 (Ma et al., 2011)

 Скокът в плътностите е индикативен за слаба ударна вълна!



#### Моделиране на максималната енергия на протоните



#### Реалистична MHD симулация на изригване



#### Коронална плътност по време на изхвърлянето на маса



• Х-Z и Х-Y разрези на короналната плътност за последните 20 мин на симулацията

- Виждат се различни структури на плазмата в изригването
- СМЕ-то се разпространява в стриймър

#### Числен модел за ускорението на протоните Energetic Particles Radiation Environment Module - EPREM







X [R<sub>s</sub>]

 Избрахме две магнитни силови линии: една с наймного ускорение на частиците (1), и друга с наймалко (2)

 Линия 1 е в район където СМЕ-то се разширява и отдалечава с голяма скорост, и има голяма промяна в плътностите при ударната вълна

• Линия 2 е в много поспокоен район

# Протонни потоци при 8 R<sub>s</sub>



#### Резултати и предстояща работа

- Анализирахме EUV наблюдения на едромащабни вълни в короната
- Открихме съответствие между наблюденията и ударни вълни
- Ударните вълни могат да ускорят протони над 1000 пъти, до ~20 MeV

• Така, отдалечените наблюдения могат да се ползват за характеризиране и предвиждане на потоците енергийни частици

• Предстои пълен анализ на 15те коронални вълни

• Проведохме 3D числени глобални симулации на коронално ускорение на частици

• Бързите СМЕ и силна ударна вълна могат да ускорят протони до над 100 MeV под 8 R<sub>s</sub>

 Ускорението на протони (и други йони) в ударни вълни в короната има голяма (може би доминантна) роля при образуването на потоците слънчеви високо енергийни частици.

 Отдалечените наблюдения в EUV и радио с голяма разделителна способност, комбинирани с моделиране, показват голям потенциал за предвиждане на SEP-потоците при слънчеви изригвания