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How are SEPs produced?

Solar Energetic Particles (SEP): 1 MeV < E < 500 MeV/nucleon ions; e i
Pose significant radiation hazard for astronauts and spacecraft. Ol picture:

Only Flares

First reported in 1949, initially thought to originate in flares
Observations in 70s/80s suggested two types:
impulsive - small, related to flares, narrow longitudinal ranges

gradual - large, related to coronal mass ejection (CME)-driven el Potire:
shocks, wide longitudinal range | omesmue

- Newer, better observations suggested two-type picture oversimplified:
impulsive signatures seen in gradual events and vice versa

- To add to the confusion:
Reames, 1999
1. Shocks can form as low in the corona as 1.2 Rsun

(Gopalswamy et al., 2011) :

Protons can be accelerated up to 1 GeV in coronal e
shocks (Kota et al, 2005; Roussev et al, 2004) é 4

Questions | am interested in: Tylka and Lee, 2006




Coronal Mass Ejections and SEPs
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June 13, 2010 event - one of the first AIA events

SDO/AIA AlA_2 211 13—Jun—2010 05:37:00.600 UT
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Combining Radio Shock and EUV Wave observations
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Drifting radio bursts signify
electron beams accelerated in
traveling shocks




Change in density and/or temperature

Estimate plasma density/temperature
temperature AIA EUV observations!

Differential Emission Measure (DEM, Q(T)):

amount of emitting material in a volume dV i

temperature interval dT

-Performed DEM calculations (Weber et al,,
2005) from six-channel AIA observations

- Obtained density before/during ratio
(t; before event, t, during event)

Slightly lower than estimates from radio
observations — r~1.56 (Ma et al., 2011)

in wave sheath from multi-




Estimate proton momentum gain from
Diffusive Shock Acceleration (DSA) theory

Use:
- Measured shock kinematics and derived shock strength

- Coronal potential magnetic field model
- DSA involves first/second-order Fermi acceleration at shocks

- From DSA, momentum change in time dt is (Zank et al., 2006):
ris density jump

Koz = K| COSz(eBN) + Ky Sin2<eBN> k, is diffusion coefficient
Bgy\ is shock-field angle

- - )2 A\, Is scattering mean free path
S - = I
K| = U)‘H/S riL = £y /[L+ (A /7)) rg is particle gyroradius

Combine:
Assume
reasonable A, - Coronal potential B-field
model from photospheric
magnetograms

(Schrijver & De Rosa, 2003)

- Geometric spherical shock
front model from observed
EUV wave kinematics
(Kozarev et al.,, 2012)




Time-Dependent Shock-Field Crossing Angles

Ogy 0t B—Shock Crossings
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Time-dependent B,
maps also

potentially useful for
interpretation of
radio observations
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Model: ;
- One 10 keV proton [ ;
per field line = 4.00
- Update energy only '
if shock crosses line HW
- Ignore solar wind (i A
speed (small this low mw

in corona)
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Coronal and CME density evolution

» X-Z and X-Y slices of density
evolution over 20 minutes

« Expansion preferentially in +Z and
—Y directions

Kozarev et al., 2013

« Sheath and Pile-Up Compression
(PUC)

« PUC wrapped closely around flux rope.

* A dimple develops where part of the
shock is still inside the streamer




Acceleration along field lines distorted by CME

Kozarev et al., 2013
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Further examine acceleration along two field lines

Kozarev et al., 2013
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-Some of it could be due to
pile-up compression region
behind shock

Line 2

-Efficient acceleration along
line in fast-expanding CME
region

-Much less acceleration in
region of slower expansion

-Detailed shock dynamics
crucial to modeling
acceleration properly!




Current Efforts:

Develop and combine tools for better EUV wave
characterization - better acceleration estimation

Use deprojected AIA data to study lateral speeds,
relation between overexpansion of erupting
flaments/loops and wave morphology (width
intensity) related to plasma pile-up

R, = 1.30327 +/-0.00909 Rs
B R, = 163473 Rs
V, = 306,81 +/-28.59 km/s
v, = 480.62 km/s
W o = 362,10 +/-60.47 m/2

Use improved radial kinematic measurements to study
wave evolution and characteristics

Develop and improve algorithms for automatic detection and tracking of waves,
in order to improve the geometric shock front model and Ogy estimation

Calculate and use time-dependent DEM maps to study change
in temperature and density = shock evolution and strength




