# More Than a Star: How Does Solar Activity Impact The Heliosphere?

Kamen Kozarev, Smithsonian Astrophysical Observatory Bashfest 2013 Symposium

### Some Interesting Questions

- How is the solar corona heated? How is the solar wind accelerated?
- What are coronal mass ejections? What drives/ triggers them?
- Where is the edge of the Heliosphere?
- How/where/when are high energy particles produced during eruptions in the solar corona? Can we use remote observations to characterize this process?

# The many faces of the Sun



# How is the corona heated? How is the solar wind accelerated?

Two general ideas have emerged ...

- Wave/Turbulence-Driven (**WTD**) models, in which open flux tubes are jostled continuously from below. MHD fluctuations propagate up and damp.
- Reconnection/Loop-Opening (**RLO**) models, in which energy is injected from closed-field regions in the "magnetic carpet."



Cranmer & van Ballegooijen (2010)

Roberts (2010)

# There's a natural appeal to "RLO"

Open-field regions show frequent jet-like events.

Evidence of magnetic reconnection between open and closed fields.



But is there enough mass & energy released (in the **subset** of reconnection events that turn closed fields into open fields) to heat/accelerate the entire solar wind?





### Recent extensions of "WTD" promising

Turbulent solar wind computed along field lines mapped from high-resolution magnetograms, evoking Alfven-wave turbulence dissipation.

*Result:* Power spectra of field **magnitude** fluctuations at 1 AU may be explained by self-consistent evolution of hi-res collections of flux tubes.





van Ballegooijen et al. (2011) & Asgari-Targhi et al. (2012) simulated incompressible MHD turbulence in expanding flux tubes  $\rightarrow$  coronal loops & open fields.

*Result:* Basic WTD phenomenology seems to work

# Small-scale feature observations may hold the key to understanding coronal heating

New NASA Interface Region Imaging Spectrograph (IRIS) mission!



Transition region

Photospher



# The Solar Cycle



# Solar activity cycle manifestation on mid- and long term





#### Short-term solar activity: flares and Coronal Mass Ejections (CMEs)

- Flares and CMEs are the most energetic impulsive solar system events – up to 10<sup>33</sup> ergs released per event
- Usually complementary events
- Occurring throughout the solar cycle, much more common near the peak of solar activity
- Related to highly elevated EUV, X-Ray, microwave, Radio, and particle emissions



# Example: the May 11, 2011 event



www.lmsal.com/isolsearch

# The September 30, 2013 event

![](_page_11_Picture_1.jpeg)

www.lmsal.com/isolsearch

### Solar Eruptions: The Standard Picture

![](_page_12_Figure_1.jpeg)

![](_page_12_Figure_2.jpeg)

![](_page_13_Picture_0.jpeg)

![](_page_14_Figure_0.jpeg)

### Likely triggers/drivers of CME eruption:

- Tether cutting reconnection
- Loss of equilibrium (through kink and/or torus instability)

# Tether cutting reconnection

![](_page_16_Figure_1.jpeg)

Moore et al., 2001

# Loss of Equilibrium – ideal MHD instabilities

![](_page_17_Figure_1.jpeg)

# Sympathetic Eruptions - August 1, 2010

mem=20.4GB

Time: 2010-08-01T00:00:31.494Z, dt=189.0s aia\_20100801T000031\_304-211-171-blos\_2k.prgb channel=304, 211, 171, 6173, source=SDO/AIA

www.lmsal.com/isolsearch

### Can sympathetic eruptions be triggered?

![](_page_19_Picture_1.jpeg)

Torok et al., 2011

#### CME-CME interactions - enhanced shocks

![](_page_20_Figure_1.jpeg)

![](_page_20_Figure_2.jpeg)

# CMEs in the heliosphere

![](_page_21_Picture_1.jpeg)

http://secchi.nrl.navy.mil/index.php?p=movies

### Voyagers and the edge of the heliosphere

![](_page_22_Figure_1.jpeg)

#### V1 crossed the heliopause on August 25, 2012: Why was it announced only a month ago?

http://voyager.gsfc.nasa.gov/heliopause/heliopause/v1la1.html

![](_page_23_Figure_2.jpeg)

![](_page_23_Figure_3.jpeg)

#### 3 tell-tale signs expected:

- Sharp decrease in solar wind density and speed
- Sharp increase in GCR fluxes
- Sharp change in B-field direction Not seen! Why?

# The porous heliosheath

![](_page_24_Figure_1.jpeg)

![](_page_24_Figure_2.jpeg)

![](_page_24_Figure_3.jpeg)

# A porous, open heliosheath

![](_page_25_Picture_1.jpeg)

Image: NASA

### Particle populations in the heliosphere

![](_page_26_Figure_1.jpeg)

http://www.srl.caltech.edu/ACE/ASC/DATA/level3/fluences/ContribsToOxygenFluence.gif

#### **Solar Energetic Particles (SEPs)**

- propagate along interplanetary magnetic field (IMF) lines
- impact planetary environments
- can cause serious damage to satellite electronics
- can cause acute or long-term radiation disease to astronauts

![](_page_27_Figure_5.jpeg)

#### How SEPs are made: Flares and CMEs

![](_page_28_Figure_1.jpeg)

#### JUNE 7, 2011 CME

![](_page_29_Picture_1.jpeg)

www.lmsal.com/isolsearch

#### Particles are accelerated (and leave) very quickly!

![](_page_30_Figure_1.jpeg)

# Flare vs. CME particle acceleration

- Flares can accelerate particles to high energies (especially electrons), e.g., Kahler et al. (2007)
- However, flares occur very low in corona, so access to open field lines uncertain
- Flare protons not usually observed to high energies in situ
- Fast CMEs drive shock waves (metric radio observations) very close to the Sun
- Simulations show shock waves can accelerate particles to very high energies (esp. protons) – e.g., Manchester et al. (2005), Roussev et al. (2004), Sokolov et al. (2009)
- Can CME-driven shocks in the corona accelerate SEPs?
- Can we use remote coronal observations to characterize acceleration?

![](_page_32_Figure_0.jpeg)

Patsourakos et al., 2009

#### **Reflections/Refractions**

![](_page_33_Figure_1.jpeg)

Olmedo et al., 2012

![](_page_34_Figure_0.jpeg)

### Preliminary wave statistics

![](_page_35_Figure_1.jpeg)

Nitta et al., 2013

#### Can we use remote observations of coronal waves/ shocks to learn about particle acceleration?

#### June 13, 2010 event – 12-sec cadence, 5 min-propagation

![](_page_36_Picture_2.jpeg)

Kozarev et al., 2011a

![](_page_36_Figure_3.jpeg)

#### AIA/211 Angstrom

#### Radio and EUV observations

![](_page_37_Figure_1.jpeg)

#### Change in density and/or temperature

Estimate wave density change from <u>multi-channel</u> EUV observations!

$$n_e^2 dV = Q(T)dT$$

$$\mathbf{r} = \frac{n_{e2}}{n_{e1}} \sim \frac{\sqrt{EM_2}}{\sqrt{EM_1}} \sim \frac{\sqrt{\int Q_2(T) dT}}{\sqrt{\int Q_1(T) dT}}$$

Differential Emission Measure (DEM, Q(T))

amount of emitting material in a volume dV

in temperature interval dT
Don't know dV, but can take ratios
t1 before event, t2 during

For R2, r~1.18

•For R3, r~1.12

•Slightly lower than estimates from radio observations – r~1.56 (Ma et al., 2011)

 Density jump suggests wave is signature of a weak shock!

![](_page_38_Figure_9.jpeg)

Finally, can estimate particle momentum gain from Diffusive Shock Acceleration (DSA) theory. Use: -Measured shock kinematics and derived shock strength -A model for the coronal magnetic field

Zank et al., 2006

 $)^{2}]$ 

Change in momentum in time dt due to DSA acceleration is

$$dp = \frac{V_{sh}^2 p(r-1) dt}{3r \kappa_{xx}} \frac{\kappa_{xx} = \kappa_{\parallel} \cos^2(\theta_{BN}) + \kappa_{\perp} \sin^2(\theta_{BN})}{\kappa_{\parallel} = v \lambda_{\parallel}/3} \frac{\kappa_{\perp} = \kappa_{\parallel}/[1 + (\lambda_{\parallel}/r_g)^2]}{\kappa_{\perp} = v \lambda_{\parallel}/3}$$

r is density jump,  $k_{xx}$  is diffusion coefficient, dependent on  $\theta_{BN}$  (shock normal-field angle)

![](_page_39_Figure_5.jpeg)

#### Time-dependent Shock-Field crossing angles

![](_page_40_Picture_1.jpeg)

![](_page_40_Figure_2.jpeg)

#### Proton energy gain modeled

#### Model:

One 10 keV proton per field line
Update energy only if shock
crosses line
Ignore solar wind speed – small
in low corona

#### **Results:**

-Weak shock able to accelerate protons to ~20 MeV in ~5 min.

-Consistent with no significant increase of proton fluxes at 1 AU on June 13, 2010

-Stronger shocks should accelerate protons to much higher energies

![](_page_41_Figure_7.jpeg)

#### Coupled simulations of CME and SEP acceleration: - MHD simulation of CME + kinetic proton simulation

![](_page_42_Figure_1.jpeg)

#### Coronal and CME density evolution

Kozarev et al., 2013

![](_page_43_Figure_2.jpeg)

• X-Z and X-Y slices of density evolution over 20 minutes

- Expansion continues preferentially in +Z and –Y directions
- Sheath and Pile-Up Compression
   (PUC)
- PUC wrapped closely around flux rope.
- A dimple develops where part of the shock is still inside the streamer

#### Acceleration along field lines distorted by CME

#### Kozarev et al., 2013 a) **b**)<sub>10<sup>8</sup></sub> Event-integrated Fluxes min 46 min 70 Line 1 sr<sup>1</sup> MeV<sup>-1</sup>] 106 10<sup>10</sup> 104 Line 1 ۍ. $10^{2}$ sr<sup>1</sup> MeV<sup>-1</sup>] 10 Z [R\_] Z [R<sub>s</sub>] -8 May Flux [cm<sup>-2</sup> 10<sup>0</sup> 10<sup>8</sup> Line 10-2 10 ET COLO 10<sup>7</sup> Fluence [cm<sup>2</sup> 10 20 30 40 50 60 70 4 5 X [R<sub>s</sub>] 3 X [R,] Time [min] **c)**<sub>10<sup>8</sup></sub> Line 2 sr<sup>-1</sup> MeV<sup>-1</sup>] 10<sup>6</sup> 106 ine 104 10<sup>5</sup> ۲ [R] Ę, °. $10^{2}$ ر پی ا 10<sup>2</sup> کا ا 10<sup>0</sup> 10<sup>4</sup> min 0.74 - 70.56 $10^{-2}$ (-Y cut $10^{\circ}$ 10<sup>-1</sup> 10<sup>1</sup> 3 X [R\_] 4 X [R<sub>s</sub>] 10 10 20 30 40 50 60 70 Energy [MeV] **Density contours + Field lines** Time [min]

•Look at two lines: one with most acceleration, one with least

• Call them Line 1 and Line 2

#### Further examine acceleration along two field lines

Kozarev et al., 2013

![](_page_45_Figure_2.jpeg)

#### **CME-SEP** modeling conclusions

- Shape and dynamics of CME governed by coronal conditions
- CME dynamics dictated shock shape and strength
- Varying enhancement of SEP fluxes along the shock front
- Significant acceleration due to pile-up compression region!
- Strong and weak acceleration both present!

#### Summary

- The Sun is very dynamic on multiple time scales
- Magnetic field reorganization plays a central role in solar activity
- Shocks, turbulence, and reconnection are important universal phenomena in heliophysics
- Heliophysics is just beginning to study how magnetic field dynamics influences the manifestations of activity
- Future missions such as Solar Probe Plus and Solar Orbiter, will allow for even more insight into solar activity!

![](_page_47_Picture_6.jpeg)

# Instead of a "Thank You" slide: high-cadence imaging of coronal shocks

![](_page_48_Figure_1.jpeg)

Carley et al., 2013

Thank You!

#### One big picture

![](_page_50_Figure_1.jpeg)

Patsourakos & Vourlidas 2012

# The Solar Wind

![](_page_51_Figure_1.jpeg)

#### **Coronal Waves**

Finally, can estimate amount of shock acceleration, using: -Diffusive Shock Acceleration (DSA) theory -Measured shock kinematics and derived shock strength -A model for the coronal magnetic field

Change in momentum in time dt due to DSA acceleration is

$$dp = \frac{V_{sh}^2 p(r-1)dt}{3r\kappa_{xx}}$$

Particle acceleration timescale (Zank et al., 2006)

Diffusion coefficient

$$\tau_{acc} = \left(\frac{1}{p}\frac{dp}{dt}\right)^{-1} = \frac{3r\kappa_{xx}}{V_{sh}^2(r-1)}$$
$$\kappa_{xx} = \kappa_{\parallel}\cos^2(\theta_{BN}) + \kappa_{\perp}\sin^2(\theta_{BN})$$
$$\kappa_{\parallel} = v\lambda_{\parallel}/3 \quad \kappa_{\perp} = \kappa_{\parallel}/[1 + (\lambda_{\parallel}/r_g)^2]$$

 $\theta_{BN}$  is shock normal-field angle,  $\lambda_{||}$  is scattering mean free path, r is density jump

#### Directional velocity measurements from Voyager 1

![](_page_53_Figure_1.jpeg)

SM Krimigis et al. Nature 474, 359-361 (2011) doi:10.1038/nature10115

#### The heliosphere and its boundaries in the general direction of Voyager 1.

![](_page_54_Figure_1.jpeg)