
STFC Advanced Summer School 2010

Working with data from the Solar Dynamics Observatory
Daniel Brown, Stephane Regnier, Mike Marsh, and Danielle Bewsher

UNIVERSITY OF CENTRAL LANCASHIRE

Abstract

The aim of this document is to introduce the analysis of data from SDO using SSWIDL, specifically AIA and
HMI observations. This primer will cover how to obtain data, how to read it in to SSWIDL, and some common
analysese that the user may want to do.

1 Introduction

The Solar Dynamics Observatory (SDO) is a NASA mission that was launched in February 2010 to study the
dynamics of the solar atmosphere and interior. It comprises three instruments, the Atmospheric Imaging As-
sembly (AIA), the Helioseismic and Magnetic Imager (HMI), and Extreme Ultraviolet Variability Experiment
(EVE). AIA and HMI are both imaging instruments with both high spacial and temporal resolution in a range
of spectral bands/data products, producing ∼ 1.5 TB of data per day.

This large data set means that obtaining and analysing data becomes a tricky process. It will often be the case
that all the data required for an analysis can not be held in a computers memory at once. Researchers using
SDO data will have to be clever about how data acquisition and analysis is performed.

This primer aims to introduce researchers to obtaining SDO data in the first place, and some common things
that might be useful in the course of a larger analysis. Tips about dealing with large data sets will be given as
appropriate throughout the primer.

1.1 SSWIDL

SolarSoftWare IDL (SSWIDL) is a set of software libraries for IDL that has been developed by the solar
community over the last few years. The aim is to provide tools to analyse data from solar physics missions
and observatories, and many instrument teams use it to distribute software to read in, prepare, and analyse data
from their instrument. The libraries can be obtained from

http://www.lmsal.com/solarsoft/sswdoc/index_menu.html

though as it is quite a large set of libraries, many institutes prefer to maintain an institute copy which is mounted
on all relevant desktop PCs.

This primer assumes that the SDO branches of SSWIDL is available on the PC being used, and that the instru-
ments have been added to the SSW instrument path with a line along the lines of

setenv SSW_INSTR "aia hmi"

or

setenv SSW_INSTR "aia hmi eis secchi trace"

depending on the instruments required, being in either the global .cshrc file or in a user’s .cshrc file. In
many institutes the system manager may have set this up already (this has been done for the summer school
workshop at UCLan).

For more information about installing and setting up SSWIDL, please refer to the website above.

As well as assuming that SSWIDL is available, this primer also works on the basis that the reader has some
familiarity with IDL.

2 Obtaining SDO/AIA and SDO/HMI data

2.1 Browsing for SDO data

Several sites offer visual browsing of the latest solar data, with options to review previous days in the archive.
These sites are often useful for a quick look, but not so useful for obtaining data.

Some useful sites are:

2

• The Sun Today offered by Lockheed (http://sdowww.lmsal.com/suntoday.html) shows
up-to-date images of the Sun in all AIA wavelengths and provides information from an events catalog.

• Helioviewer (http://www.helioviewer.org) is a useful tool to visualise large amounts of data.
This is an open source program. A database of the last 14 years of SOHO data as JPEG images are
available using the online viewer or by installing the JHelioviewer on your computer (this requires the
latest version of Java to be installed on your computer). This tool will be soon evolve to provide SDO/AIA
images as JPEG 2000. There are options to produce movies, zooming and saving the results.

2.2 Data Archives

There are several ways to obtain observation from AIA and HMI. At the moment, these sources are all based in
the US, but in future other repositories should appear elsewhere (including the UCLan repository in the UK).

Current data access points are as follows:

• From the HMI-AIA Joint Science Operations Center (JSOC - http://jsoc.stanford.edu/)
based at Stanford University;

• From the AIA cutout service at Lockheed (http://lmsal.com/get_aia_data/) which allows
smaller cutouts from the data to be extracted and downloaded;

• From the Virtual Solar Observatory (VSO - http://sdac.virtualsolar.org/cgi/search).

These are essentially web portals, where a web form is filled in with the required date/time and wavelength
parameters, and a data request is made for subsequent download.

However, the VSO also has tools in the SolarSoftWare tree for obtaining data through SSWIDL.

2.3 Obtaining data via the VSO in SSW

SSW provides a set of commands for interacting with the Virtual Solar Observatory directly from within the
SSWIDL environment. Two of these are of particular interest for downloading SDO data (and any other data in
the VSO). These are:

• vso search - which searches for data matching supplied time/date/instrument/wavelength/etc specifi-
cations;

• vso get - attempts to download data corresponding to the meta-data from a previous VSO search.

2.3.1 Searching for data - vso search

A typical VSO search might be carried out as follows

IDL> md=vso_search(’2010/08/01 10:00:00’, ’2010/08/01 10:05:00’, $
instr=’aia’)

which will search for all AIA data between 10:00 and 10:05 on 1st August 2010. This call will display search
results similar to

Records Returned : JSOC : 187/187
Records Returned : JSOC : 0/0

3

which means that 187 observations were found in one catalog and none were found in a second catalog. In this
case, the two catalogs were based at the JSOC, and refer to the AIA level 1 (4096× 4096) catalog, and the AIA
synoptic (1024× 1024) catalog. Other catalogs may come on line in the future as other SDO providers feed in
to the VSO.

The vso search routine has downloaded meta-data associated with the found observations and stored them
as a structure array in the variable md. The meta-data can be viewed with

IDL> help, md, /str

which displays the meta-data of the first record, something like the following:

** Structure VSORECORD, 13 tags, length=256, data length=252:
TIME STRUCT -> VSOTIME Array[1]
EXTENT STRUCT -> VSOEXTENT Array[1]
WAVE STRUCT -> VSOWAVE Array[1]
DETECTOR STRING ’’
INSTRUMENT STRING ’AIA’
SOURCE STRING ’SDO’
PROVIDER STRING ’JSOC’
INFO STRING ’AIA level 1, 4096x4096’
PHYSOBS STRING ’intensity’
FILEID STRING ’aia_lev1:171:1059732035’
SIZE FLOAT 66200.0
URL STRING ’’
GETINFO STRING ’’

As md is an array, meta-data for any specific observation can be viewed by specifying its number, i.e.,

IDL> help, md(10), /str

The meta-data structure also contains some sub-structures which can be viewed by

IDL> help, md.wave, /str

which displays something similar to

** Structure VSOWAVE, 4 tags, length=40, data length=40:
MIN FLOAT 171.000
MAX FLOAT 171.000
TYPE STRING ’NARROW’
UNIT STRING ’Angstrom’

So, it is clear that this particular observation is made using the 171 Å filter. Looking at the next observation

IDL> help, md(1).wave, /str

** Structure VSOWAVE, 4 tags, length=40, data length=40:
MIN FLOAT 304.000
MAX FLOAT 304.000
TYPE STRING ’NARROW’
UNIT STRING ’Angstrom’

it is clear that this observation is made using the 304 Å filter. The wavebands for the first few observations can
be viewed with

IDL> print, md(0:14).wave.min
171.000 304.000 94.0000 4500.00 171.000
304.000 1600.00 94.0000 171.000 304.000

4

1700.00 94.0000 171.000 304.000 1600.00

showing that observation in several different pass-bands have been picked up.

The VSO search can be refined further, for example, the search can be restricted to a fixed wavelength using
the wave keyword in vso search, i.e.,

IDL> md304 = vso_search(’2010/08/01 10:00:00’, ’2010/08/01 10:05:00’, $
instr=’aia’, wave=’304’)

Records Returned : JSOC : 25/25
Records Returned : JSOC : 0/0

which finds 25 observations in the 304 Å pass-band in the desired time range.

The sample keyword attempts to find a subset of observations that are evenly spread throughout a time-range.
For example

IDL> md304 = vso_search(’2010/08/01 10:00:00’, ’2010/08/01 22:00:00’, $
instr=’aia’, wave=’304’, sample=600)

will try to find a subset of 304 Å observations in the 12 hour interval which are 600 seconds (10 minutes) apart.

Sometimes, the wave keyword is not enough to specify the required data product. For example, HMI data will
all have the same wavelength range, but will offer different data products (e.g., magnetograms, dopplergrams,
etc). In this situation the physobs keyword can be used. For example

IDL> mdhmi = vso_search(’2010/08/01 10:00:00’, ’2010/08/01 10:05:00’, $
instr=’hmi’, physobs=’LOS_magnetic_field’)

which will find the line-of-sight magnetograms in the specified time range. Other useful values of physobs
include physobs=’intensity’ and physobs=’LOS velocity’.

There are a whole range of other keywords that can be used to refine a search. These have not been listed in
detail here as they are not necessarily useful for SDO data at the moment (although when more repositories -
such as UCLan - feed in to the VSO, then the provider keyword may become useful). More details can be
found with an xdoc search of the command.

Exercise

Try different VSO searches to identify different sets of data, e.g.,

• How many AIA observations are available in the first minute of the day on 15th August? How many
different wavelengths are covered?

• Find 304 Å data on 12th August which are spaced 30 minutes apart;

• Find the corresponding magnetogram data for the 304 Å observations above;

• Find all of the AIA white light data (4500 Å) on 20th August. How many observation are there?

• Find HMI intensity data on the same day. How does the number of HMI observations compare to AIA?

2.3.2 Downloading data - vso get

Note: during the practical session, please avoid trying to download large amounts of data - there is
neither the time or bandwidth to meaningfully do this. Restrict yourself to downloading only a couple of
files to try it out, but then use the data provided on the memory sticks. Please read through the entire
section before trying out some commands.

5

Once a search has identified suitable data, it needs to be downloaded to the local system. This is done using the
vso get command. In its simplest form, this can be done as follows

IDL> md=vso_search(’2010/08/01 10:00:00’, ’2010/08/01 10:00:30’, $
instr=’aia’)

Records Returned : JSOC : 10/10
Records Returned : JSOC : 0/0
IDL> status=vso_get(md)

This will download the requested files and place them in the current working directory (it may take a while
depending on how many files have been requested).

It may more usefully be called with the out dir keyword which specifies a target directory to copy the files
in to, e.g.,

IDL> status=vso_get(md, out_dir=’/archive/sdo/aia/mydata/’)

The variable status is a structure array that contains some download information for each file. e.g.,

IDL> help,status,/str

** Structure GETDATARECORD, 5 tags, length=72, data length=68:
PROVIDER STRING ’JSOC’
FILEID STRING ’aia_lev1:1600:1059732053’
URL STRING ’http://vso.tuc.noao.edu/cgi-bin/drms_test/

drms_export.cgi?series=aia_lev1;re’...
INFO STRING ’’
SIZE FLOAT 0.00000

The fits files are now in the target directory ready for analysis.

The files that have been downloaded are uncompressed fits files and may have sizes around 65 MB. It is possible
to download RICE compressed fits files instead with the keyword /rice, i.e.,

IDL> status=vso_get(md, out_dir=’/archive/sdo/aia/mydata/’, /rice)

These files are typically around 5.3 MB, and may improve download times, particularly where there is restricted
bandwidth. SSW will automatically uncompress these files when they are read into SSWIDL.

Note, at the time of writing, there have been some problems getting the all of the correct keyword values in
the fits header when compressed files are uncompressed - though they are correct in the uncompressed header.
Hopefully this will be resolved soon.

Note 2, when downloading large amounts of data, give some thought to how much space the files will take
up (will it fit on the network), how much bandwidth it will need to download (will it clog up everyone else’s
internet traffic), how long it will take to download (will it still be downloading in a weeks time), and so on.

2.3.3 Further sorting of data

It is possible to apply further sorting to your search in SSWIDL before requesting files. For example

IDL> md=vso_search(’2010/08/01 10:00:00’, ’2010/08/01 10:05:00’, $
instr=’aia’)

Records Returned : JSOC : 187/187
Records Returned : JSOC : 0/0
IDL> status=vso_get(md(0:4), out_dir=’/archive/sdo/aia/mydata/’)

would retrieve only the first five files found.

6

IDL> md=vso_search(’2010/08/01 10:00:00’, ’2010/08/01 10:05:00’, $
instr=’aia’)

Records Returned : JSOC : 187/187
Records Returned : JSOC : 0/0
IDL> status=vso_get(md([4,15,25]), out_dir=’/archive/sdo/aia/mydata/’)

would retrieve the 5th, 16th and 26th files in the list (remember, IDL starts counting at 0).

IDL> md=vso_search(’2010/08/01 10:00:00’, ’2010/08/01 10:05:00’, $
instr=’aia’)

Records Returned : JSOC : 187/187
Records Returned : JSOC : 0/0
IDL> ii = indgen(38)*5
IDL> status=vso_get(md(ii), out_dir=’/archive/sdo/aia/mydata/’)

would retrieve every 5th file found.

IDL> md=vso_search(’2010/08/01 10:00:00’, ’2010/08/01 10:05:00’, $
instr=’aia’)

Records Returned : JSOC : 187/187
Records Returned : JSOC : 0/0
IDL> ii = where(md.wave.min eq ’171’)
IDL> status=vso_get(md(ii), out_dir=’/archive/sdo/aia/mydata/’)

would identify all of the 171 Å data from the meta-data and retrieve only those files (though in practice, you
might check to see if any 171 Å files had been found first).

Any reasonable IDL array indexing and searching should help refine the search further prior to downloading
the data.

Exercise

Perform and refine a search on SDO data and download a couple of files to try out VSO downloads.

2.4 SDO data on the memory stick

To avoid wasting large amounts of time on data download during the practical session, a selection of AIA and
HMI data has been made available on the memory stick provided. There are three sets of data separated into
three directories. These are:

• AIA 5min - this is a selection of AIA data in various different wave bands taken from a 6 minute period
on 9th August 2010;

• AIA spread - this is a selection of AIA 193 Å data taken from midnight and midday from 5-13th
August 2010;

• HMI spread - this is a selection of HMI magnetograms corresponding to the AIA 193 Å data in
AIA spread.

This data is intended to provide a larger set with which to try out the methodology in this primer.

7

3 Reading SDO data into SSWIDL

3.1 Using read sdo

Now that some SDO data has been obtained, it needs to be read into SSWIDL. This can be done using the
read sdo command. For example

IDL> read_sdo, ’aia_file.fits’, index, data

reads in the data from the supplied file aia file.fits, and stores the fits header in the structure index
and the SDO image in the array data. Querying the variables should return something like the following

IDL> help,index,data
INDEX STRUCT = -> MS_020517472001 Array[1]
DATA LONG = Array[4096, 4096]

The size of the SDO image (4096× 4096) can easily be seen.

Multiple files can be read in at once by supplying an array of file names to be read in instead of a single file
name. The SSW findfile command can be used to search for files, e.g.,

IDL> afiles=findfile(’aia*.fits’)
IDL> read_sdo, afiles, aindex, adata

uses the findfile command to find all of the fits files in the current working directory which begin with aia
and end with .fits, then the read sdo command to read all of those files in. Querying the output variables
should provide information similar to the following:

IDL> help,aindex,adata
AINDEX STRUCT = -> MS_020517472001 Array[10]
ADATA LONG = Array[4096, 4096, 10]

In this case, 10 files have been read in, and the size of the structure array, aindex, and the third dimension of
adata reflect this.

The findfile function can be supplied with a directory path to look for files in different directories, e.g.,

IDL> afiles=findfile(’/archive/sdo/aia/aia*.fits’)

For the data provided on the memory sticks, the path could be something like

IDL> afiles=findfile(’/media/USB/AIA_5min/aia*.fits’)
IDL> read_sdo, afiles, aindex, adata

Warning: think carefully before reading in large numbers of files at once. If each file is ∼ 65 MB, then it
doesn’t take too many files to fill up the available computer memory. For example, 15 images will require
∼ 1 GB of free memory. Exceeding available memory will cause the computer to start swapping leading to a
painful decrease in speed.

You may (initially) only want to look at the fits headers of a file/files. This can be done by supplying the
/nodata flag to the read sdo command, e.g.,

IDL> read_sdo, afiles, aindex, adata, /nodata
IDL> help, aindex, adata
AINDEX STRUCT = -> MS_020517472001 Array[10]
ADATA UNDEFINED = <Undefined>

The adata variable is left completely empty allowing the fits headers to be queried (perhaps with further
search refinements made) before reading in the data.

8

It is often the case that only a small part of an SDO image is of interest, and the read sdo routine allows only
a sub-field of the data to be read in to SSWIDL. This allows a region to be identified by other means (e.g., by
examining only a single image in the sequence), and that selected portion of the image in a larger number of
files to be read in at once.

To extract a sub-field, four additional inputs are required

read_sdo, afiles, aindex, adata, llx, lly, nx, ny

where (llx, lly) are the pixel positions of the lower-left corner of the required cutout and (nx, ny) is the size
of the sub-field. So

IDL> read_sdo, afiles, aindex, adata, 3100, 2300, 800, 800

will cut out an 800 × 800 pixel region from each image with a lower left hand corner located at pixel position
(3100, 2300) in the full image. Querying the two variables confirms this, i.e.,

IDL> help, aindex, adata
AINDEX STRUCT = -> MS_020517472001 Array[10]
ADATA LONG = Array[800, 800, 10]

3.2 Reading in compressed data

RICE compressed fits files can also be read into SSWIDL in exactly the same way. When this is done, an
uncompressed version of the fits file is created in the /tmp directory (a message to this effect is displayed). It
is good practice to delete these files when you are done with them, i.e.,

rm /tmp/AIA*.fits /tmp/HMI*.fits

in the terminal window (not in SSWIDL), because when the /tmp directory is full, read sdo will be unable
to uncompress new files and will display error messages.

However, there are extra keywords that can be used with read sdo to help manage this.

The command

IDL> read_sdo, afiles(0), index, data, /uncomp_delete

will uncompress a file into /tmp, read it in to SSWIDL, and then delete the uncompressed file from /tmp -
and so clean up after itself. Note, there is also a /comp delete flag that will keep the uncompressed files
and delete the original compressed ones - be careful that you use the correct one.

Alternatively, it may be appropriate to keep uncompressed files (for quicker access at a future data), but store
them in another directory. This can be done with

IDL> read_sdo, afiles, index, data, $
parent_out=’/archive/sdo/uncompressed_files/’

which will uncompress the files and place them in the chosen directory (you may want to use the /comp delete
flag in this case so that you keep only the uncompressed files).

Finally, to only uncompress data, but not read it in to SSWIDL, the following command can be used

IDL> read_sdo, afiles, index, data, /only_uncompress, $
parent_out=’/archive/sdo/uncompressed_files/’

This might be useful for uncompressing a large number of files in one go.

Exercise

9

Figure 1: AIA 193 Å data plotted with (top-left) no applied scaling; (top-right) linear scaling between a user
supplied range; (bottom-left) nonlinear square root scaling between a supplied range; and (bottom-right) non-
linear logarithmic scaling between a supplied range.

Try reading some of the data that you have downloaded (or have been supplied with) into SSWIDL. Query the
data with the help command.

4 Plotting SDO data

4.1 Basic plotting

Once data has been read in to SSWIDL, the first thing that many people want to do is look at the image.
Two-dimensional image data (from SDO or many other sources) can easily be displayed in SSWIDL using the
plot image command. For example,

IDL> plot_image, data

10

This should create a graphics window with the SDO image displayed within. The axes have units of pixels.

This image may not come out too well (e.g., figure 1 top-left), perhaps it is too dim or bright. This is because the
data has been scaled linearly between the lowest and highest value pixels. Alternative minimum and maximum
values can be supplied to select a contrast range. This is done with the min and max keywords, e.g.,

IDL> plot_image, data, min=100, max=2500

This scales the image so that any pixel value below 100 is black and any above 2500 is white. Values in-between
are linearly scaled to different shades of grey (e.g., figure 1 top-right). It may be useful to find the minimum
and maximum pixel values of an image by using the minmax command:

IDL> print,minmax(data)
0 15800

Sometimes it may be appropriate to apply a nonlinear scaling. The easiest way to do this is to use the appropriate
IDL function on the data. Some common functions are

IDL> plot_image, sqrt(data), min=sqrt(100), max=sqrt(2500)
IDL> plot_image, alog(data), min=alog(100), max=alog(2500)

which give a square root and logarithmic scaling accordingly (e.g., figure 1 bottom-left and right). Note that
the function must also be applied to the min/max scalings as well. Be careful to avoid illegal scalings (e.g., the
square root of a negative number or the log of zero) as this may produce unexpected results.

4.2 Plotting one image from a larger array

Often, multiple images may have been read in to a single array, e.g.,

IDL> help, adata
ADATA LONG = Array[4096, 4096, 10]

To plot one of these images, the array must be appropriately indexed, e.g.,

IDL> plot_image, adata(*,*,2), min=100, max=2500

plots the third index in the sequence (IDL counts from 0). The *s indicate that all columns and rows of the
image will be plotted. Changing the 2 to a different number will plot a different image in the sequence.

Exercise

Try plotting some of the data that you have read in with different scalings.

4.3 Plotting part of an image

Plotting the complete image is fine, but often only a certain part of the image is interesting, and it would be
useful to fill the graphics window with only that part of the image. This can be done by replacing the *s in the
above command to the desired cutout range, e.g.,

IDL> plot_image, data(1950:2549,1100:1699), min=100, max=2500
IDL> plot_image, adata(1950:2549,1100:1699,2), min=100, max=2500

This command plots the part of the image between pixel number 1950 and 2549 (inclusive) in the x-direction,
and between 1100 and 1699 (inclusive) in the y-direction, as shown in figure 2. The numbers can be changed
to represent the desired region within the SDO image.

Exercise

11

Figure 2: AIA 193 Å data plotted showing (left) the full disk; (right) a cutout of an active region from the disk.
The displayed cutout is shown as the white box in the left image.

Try plotting different parts of images that you have previously read in.

4.4 Plotting images in colour

The standard IDL loadct command can be used to change the colour table used for the image. The default is
greyscale, but can be changed by

IDL> loadct
0- B-W LINEAR 14- STEPS 28- Hardcandy
1- BLUE/WHITE 15- STERN SPECIAL 29- Nature
2- GRN-RED-BLU-WHT 16- Haze 30- Ocean
3- RED TEMPERATURE 17- Blue - Pastel - R 31- Peppermint
4- BLUE/GREEN/RED/YE 18- Pastels 32- Plasma
5- STD GAMMA-II 19- Hue Sat Lightness 33- Blue-Red
6- PRISM 20- Hue Sat Lightness 34- Rainbow
7- RED-PURPLE 21- Hue Sat Value 1 35- Blue Waves
8- GREEN/WHITE LINEA 22- Hue Sat Value 2 36- Volcano
9- GRN/WHT EXPONENTI 23- Purple-Red + Stri 37- Waves

10- GREEN-PINK 24- Beach 38- Rainbow18
11- BLUE-RED 25- Mac Style 39- Rainbow + white
12- 16 LEVEL 26- Eos A 40- Rainbow + black
13- RAINBOW 27- Eos B
Enter table number:

and entering the desired colour table number when prompted. If the desired colour table number is known, this
can be directly entered with, e.g.,

IDL> loadct, 3

to load in the red temperature colour table.

12

Figure 3: AIA 193 Å data plotted with (left) a greyscale colour table; (right) the proposed AIA 193 Å colour
table.

However, this is restricted to the default IDL colour tables and may not include the desired scheme. SDO/AIA
images have a set of proposed colour schemes for different spectral pass-bands. These can be accessed using
the command aia lct, e.g.,

IDL> aia_lct, rr, gg, bb, wavelnth=193, /load

loads the proposed colour table for the 193 pass-band into IDL (it also stores the red, green, and blue component
mixes in the arrays rr, gg, bb).

So a 193 image can be plotted by doing the following

IDL> read_sdo, ’aia_193_file.fits’, index, data
IDL> aia_lct, rr, gg, bb, wavelnth=193, /load
IDL> plot_image, sqrt(data), min=sqrt(100), max=sqrt(2500)

and typical results can be seen in figure 3.

Exercise

Try plotting images and sub-field images that you have previously tried using different colour tables. Do
different colour tables need different scalings?

4.5 Plotting HMI data

Data from SDO/HMI can be read in to SSWIDL and plotted in exactly the same way as described for the AIA
data above, i.e.,

IDL> read_sdo, ’hmi_file.fits’, mindex, mdata

However, there are a couple of things to bear in mind when using HMI data. First, the data may be upside
down. This can be checked by examining the fits header

IDL> print,mindex.crota2
180

13

Figure 4: HMI data may be stored upside down in the fits file (left), this can easily be corrected for (right) using
the rotate command. Comparison with the corresponding AIA 193 Å observation in figure 3 indicates that
active regions in the rotated image are co-located with their coronal emission.

This is the rotation angle of the image and if it is 180 then it is upside down. This can easily be corrected with

IDL> mdata = rotate(temporary(mdata), 2)
IDL> plot_image, mdata, min=-10000, max=10000

as shown in figure 4, though this must be done on an image by image basis for a sequence of images, e.g.,

IDL> nims=n_elements(mindex)
IDL> for i=0,nims-1 do mdata(*,*,i)=rotate(temporary(mdata(*,*,i)),2)

The second issue is that at the time of writing, read sdo does not properly scale the image. If the following
message is printed

IDL> read_sdo, mfiles, mindex, mdata

Not yet trained to apply this scaling: bzr,bsc 0.00000, 0.0100000

then the image has not been scaled properly. In the above case, it needs to be multiplied by bsc which is 0.01
to put it into physical units, i.e.,

IDL> plot_image, 0.01*mdata, min=-100, max=100

Exercise

Try reading in and plotting some HMI data, rotating as appropriate. Plot a corresponding AIA image in a
different graphics window and see if the locations of the active regions agree.

5 Examining the fits headers

So far the fits headers have been loaded in to SSWIDL and the index.crota2 keyword has been mentioned.
However, the information within the fits header can be far more useful than this. Contained within the fits

14

header is a wealth of information about the corresponding observation such as the instrument, time taken, pass
band, resolution, and so on.

5.1 Browsing the fits headers

To examine fits header information use the help command with the /struct keyword, i.e.,

IDL> help, index, /str

** Structure MS_020517472001, 176 tags, length=1560, data length=1500:
SIMPLE INT 1
BITPIX LONG 32
NAXIS LONG 2
NAXIS1 LONG 4096
NAXIS2 LONG 4096
EXTEND INT 1
DATE_OBS STRING ’2010-06-13T23:59:30.63Z’
.
.
.

This lists all the available keywords, their data type, and their values. For example, naxis gives the number
of dimensions of the observation, naxis1 and naxis2 give the array size of the stored data. Note, /str is
short for /structure.

Individual elements of an array of fits headers can be accessed by specifying the desired number, e.g.,

IDL> help, index(4), /str

5.2 Useful AIA and HMI fits keywords

There are only a small number of standard fits keywords that all fits files must have, most of the keywords
are chosen by the specific instrument team depending on the capabilities of the instrument itself (for example
spectroscopic data may require different information than imager data), many instrument teams will produce a
fits keywords specification document. However, there are some fairly common keywords that many instrument
teams use.

There are too many AIA and HMI keywords to describe in full here, but some of the more useful ones are
described in table 1. A complete list can be found on the JSOC website.

The help command allows a quick look at all of the fits keywords, but it is also useful to be able to access
individual keywords. This can be done as follows:

IDL> print, index.date_obs
2010-06-13T23:59:30.63Z
IDL> print, aindex(4).date_obs
2010-06-13T00:00:54.60Z
IDL> xcen = index.crpix1
IDL> ycen = index.crpix2
IDL> print, xcen, ycen

2047 2053
IDL> i193 = where(aindex.wavelnth eq 193)
IDL> print, i193

Exercise

15

Keyword Type Purpose
naxis1 long pixel size of image in x-direction
naxis2 long pixel size of image in y-direction
telescop string telescope/observatory name (e.g., SDO)
instrume string instrument name (e.g., AIA)
wavelnth long wave band of images (e.g., 193)
waveunit string units of wavelnth (e.g., angstrom)
date obs string date and time of start of observation
t obs string date and time of middle of observation
exptime float exposure time of observation - AIA only
cadence long cadence of image sequence - HMI only
crpix1 long reference pixel in the x-direction (1 is centre of lefthand pixel)
crpix2 long reference pixel in the y-direction (1 is centre of bottom pixel)
crval1 long location of reference pixel in x-direction (e.g., 0 is Sun centre)
crval2 long location of reference pixel in y-direction (e.g., 0 is Sun centre)
cdelt1 float pixel size in x-direction
cdelt2 float pixel size in y-direction
ctype1 string coordinate system for crval1
ctype2 string coordinate system for crval2
cunit1 string units of crval1 and cdelt1
cunit2 string units of crval2 and cdelt2
crota2 double rotation angle about reference pixel
r sun float radius of the Sun in image pixels
rsun ref double radius of the Sun in metres - AIA only
rsun obs float radius of the Sun in observing units (e.g., arcseconds)
content string data product (e.g., magnetogram) - HMI only
bunit string units of image data (e.g., Gauss) - HMI only

Table 1: Description of some useful fits keywords for SDO/AIA and SDO/HMI data.

Examine some of the fits headers in data that you have read into SSWIDL and pick out the values of useful
keywords.

5.3 Using fits keywords to refine data searches

This last line of the previous case

IDL> i193 = where(aindex.wavelnth eq 193)

indicates how the fits headers can be used for a more refined search. Consider the following example

IDL> afiles = findfile(’aia*.fits’)
IDL> read_sdo, afiles, aindex, adata, /nodata
IDL> print, aindex.wavelnth

171 211 94 335 1600 193 304 131
171 211 94 335 1700 193 304 131
171 211 94 335 1600 193 304 131
171 211 94 335 1700 193 304 131
171 211 94 335 1600 193 304 131
171 211 94 335 1700 193 304 131
171 211 94 335 1600 193 304 131

IDL> i304 = where(aindex.wavelnth eq 304)

16

IDL> afiles304 = afiles(i304)
IDL> read_sdo, afiles304, aindex304, adata304
IDL> aia_lct, rr, gg, bb, wavelnth=304, /load
IDL> plot_image, sqrt(adata304(*,*,0)), min=sqrt(10), max=sqrt(1000)

This identifies a set of AIA files and reads in the fits headers only. Printing the wave band information shows
that the fits files contain images taken in a range of different pass bands. The where function can be used to
find the indices of all of the 304 Å images which is used to extract the subset of the afiles array relating to
304 Å data. This subset is then read in and the first image plotted (in colour).

Exercise

Use the where function to perform more refined searches on your fits files.

5.4 Making plot axes more meaningful

Figure 5: An AIA 304 Å image displayed using plot image (left) without the use of any extra arguments,
(right) using the fits header to convert the scale to arcseconds.

The fits keywords can be used to convert the axes of the plot into more meaningful units, e.g.,

IDL> plot_image, sqrt(adata304(*,*,0)), min=sqrt(10), max=sqrt(1000), $
origin=-[(aindex(0).crpix1-1)*aindex(0).cdelt1, $

(aindex(0).crpix2-1)*aindex(0).cdelt2], $
scale=[aindex(0).cdelt1,aindex(0).cdelt2], $
xtitle=’X-postion (arcseconds)’, $
ytitle=’Y-position (arcseconds)’

which produces the image in figure 5 right.

Extra arguments have been added to the plot image command. The scale argument takes a two element
array containing the x- and y-scales of the images, this is stored in the cdelt1 and cdelt2 keywords. The
origin argument is also a two element array that defines the lower-lefthand corner of the axes. This can be
calculated using the negative location of Sun centre given by -crpix1 and -crpix2 and multiplying by
the pixel size to convert to arcseconds. Note, the aindex(0).crpix1-1 and aindex(0).crpix2-1
adjusts for the fact that crpix counts the first pixel as 1 where SSWIDL counts it as 0. A quick check of

17

crval1, crval2, cunit1 and cunit2

IDL> print, aindex(0).crval1, aindex(0).crval2
0 0

IDL> print, aindex(0).cunit1, ’ ’, aindex(0).cunit2
arcsec arcsec

confirms that the reference pixel is indeed Sun centre and the units are arcseconds. The xtitle and ytitle
argument allow labelling of the x- and y-axes.

Exercise

Try modifying the axes of plots of data that you have previously read in.

5.5 Working with date/time keywords

The data/time fits keywords (e.g., date obs) are given as strings, e.g.,

IDL> print,index.date_obs
2010-08-09T19:49:00.34Z

This is fine for human inspection or labelling of plots, but sometimes it is useful to be able to perform time-based
calculations, and a string is not so useful for doing this.

A date/time string can be converted into seconds (from a standard reference time) using the anytim2tai
function, i.e.,

IDL> secs = anytim2tai(aindex304.date_obs)
IDL> print, secs

1.6600746e+09 1.6600746e+09 1.6600747e+09 1.6600748e+09
1.6600748e+09 1.6600749e+09 1.6600749e+09

Now these values may not initially seem useful as the reference time was sufficiently far back that the values
have become quite large. However, this can be brought under control by choosing a more useful reference time
and subtracting this from the above result. For example

IDL> tref=’2010-08-09T19:00:00.00Z’
IDL> sref=anytim2tai(tref)
IDL> secs = anytim2tai(aindex304.date_obs) - sref
IDL> print, secs

2948.1300 3008.1200 3068.1300 3128.1200
3188.1300 3248.1200 3308.1300

IDL> mins = secs/60.0
IDL> print,mins

49.135500 50.135333 51.135500 52.135333
53.135500 54.135333 55.135500

gives the observation times in seconds and minutes respectively from the new reference time.

This information might be useful for refining a search (e.g., identifying an image every 10 minutes), or for
plotting quantities that vary with time.

Exercise

Manipulate the date/time information from fits headers that you have read in to SSWIDL.

18

5.6 Rotating HMI data

Section 4.5 explained how sometimes HMI data might be rotated by 180◦ and how to rotate the image to agree
with the AIA observations, i.e.,

IDL> mdata = rotate(temporary(mdata), 2)
IDL> plot_image, mdata, min=-10000, max=10000

This rotation will most likely change the location of the reference pixel. If the fits headers are to be used for
further analysis, then it may be sensible to update this information when the image is rotated, i.e.,

IDL> mindex.crpix1 = mindex.naxis1 - mindex.crpix1 + 1
IDL> mindex.crpix2 = mindex.naxis2 - mindex.crpix2 + 1
IDL> mindex.crota2 = mindex.crota2 - 180

Again, the +1 is due to the crpix keywords counting the centre of the first pixel as 1.

Exercise

Read in an HMI file, rotate the data and modify the keywords, then plot the image with the origin at Sun-centre
and the axes in arcseconds.

6 Tracking a region across the disk

Section 3 showed how a sub-field of an SDO observation could be read into SSWIDL. Picking a fixed region
for analysis over a few minutes is fine, but over longer periods of time the feature of interest will likely move
out of the sub-field as the Sun rotates. In order to follow a feature, its position as it rotates across the solar disk
must be calculated. This can be done using the rot xy function. Given a position in arcseconds on the solar
disk, a reference time, and a required time, this function will calculate the location of the reference position at
the required time (which can be before the reference time as well as after). For example

IDL> xcen=-50.0
IDL> ycen=100.0
IDL> tref=’2010-08-09T12:00:00.00Z’
IDL> treq=’2010-08-10T12:00:00.00Z’
IDL> npos = rot_xy(xcen,ycen,tstart=tref,tend=treq)
IDL> print,npos

163.612
100.515

In this case the reference position is (−50, 100) arcseconds from disk centre at a reference time of 12:00 on
9th August. The position of this region at 12:00 on 10th August is given by the result of rot xy, and is
(163.612, 100.515) arcseconds from disk centre.

6.1 Co-aligning a pair of observations

When a feature is being tracked in actual SDO observations, the information in the fits headers can be used to
calculate the required clipping region for each file.

First a reference image and region must be selected, e.g.,

IDL> afiles=findfile(’/archive/aia_set_*.fits’)
IDL> help, afiles
AFILES STRING = Array[18]

19

IDL> read_sdo, afiles(8), rindex, rdata
IDL> plot_image, sqrt(rdata), min=sqrt(100), max=sqrt(2500)
IDL> plot_image, sqrt(rdata(2130:2429,2350:2649)), min=10, max=50

From plotting sub-fields, a cutout of 2130-2429 pixels in the x-direction, and 2350-2649 pixels in the y-direction
has been selected, which is a 300× 300 pixel cutout. The centre of this cutout in the x- and y-directions is then
given by

IDL> xcenp = (2130.0 + 2429.0)/2.0
IDL> ycenp = (2350.0 + 2649.0)/2.0
IDL> print, xcenp, ycenp

2279.50 2499.50

and the size of the cutout is

IDL> xsize = 2429.0 - 2130.0 + 1.0
IDL> ysize = 2649.0 - 2350.0 + 1.0
IDL> print, xsize, ysize

300.000 300.000

The position of the centre of the cutout can now be converted into arcseconds by

IDL> xcena = (xcenp - rindex.crpix1 + 1)*rindex.cdelt1
IDL> ycena = (ycenp - rindex.crpix2 + 1)*rindex.cdelt2
IDL> print, xcena, ycena

140.11821 268.53490

which has the associated reference time given by

IDL> tref = rindex.date_obs
IDL> print, tref
2010-08-09T00:00:07.84Z

Figure 6: An AIA 193 Å clip at (left) 00:00 on 9th August 2010, and (right) the tracked sub-field 1 day later.

The corresponding sub-field for a different observation can be calculated as follows

IDL> read_sdo, afiles(10), cindex, cdata, /nodata
IDL> treq = cindex.date_obs

20

IDL> print, treq
2010-08-10T00:00:07.84Z
IDL> npos = rot_xy(xcena, ycena, tstart=tref, tend=treq)
IDL> print, npos

330.983
273.516

which is the new position of the centre of the sub-field in arcseconds. This can be converted into pixel position
by

IDL> xcenp2 = npos(0)/cindex.cdelt1 + cindex.crpix1 - 1
IDL> ycenp2 = npos(1)/cindex.cdelt2 + cindex.crpix2 - 1
IDL> print, xcenp2, ycenp2

2597.5673 2507.8009

which with xsize and ysize can be used to calculate the location of the lower-lefthand corner as follows

IDL> xlo = round(xcenp2 - xsize/2.0)
IDL> ylo = round(ycenp2 - ysize/2.0)
IDL> print, xlo, ylo

2448 2358

The required sub-field can now be read in using read sdo

IDL> read_sdo, afiles(10), cindex, cclip, xlo, ylo, xsize, ysize
IDL> plot_image, sqrt(cclip), min=sqrt(100), max=sqrt(2500)

assuming that the two observations are at the same resolution. Typical results can be seen in figure 6.

Exercise

Select a reference image, choose a region of interest, and track the region into a second image at a different
time.

6.2 Co-aligning a sequence of observations

The above methodology is okay for co-aligning a pair of images, but repeating it for a sequence of observations
is not necessarily the most efficient approach. Instead, sensible use of loops and arrays with a little programming
may be better.

With the reference clip selected above, consider the following temporary program for tracking the region in all
of the observations in afiles.

IDL> .r
- nf = n_elements(afiles)
- ccube = fltarr(xsize, ysize, nf)
- for n=0, nf-1 do begin
- read_sdo, afiles(n), cindex, cdata, /nodata
- npos = rot_xy(xcena, ycena, tstart=tref, tend=cindex.date_obs)
- xcenp2 = npos(0)/cindex.cdelt1 + cindex.crpix1 - 1
- ycenp2 = npos(1)/cindex.cdelt2 + cindex.crpix2 - 1
- xlo = round(xcenp2 - xsize/2.0)
- ylo = round(ycenp2 - ysize/2.0)
- read_sdo, afiles(n), cindex, cclip, xlo, ylo, xsize, ysize
- ccube(*,*,n) = cclip
- endfor

21

- end

This tracks and clips the region of interest from each of the files in turn, and stores the results in the three-
dimensional array ccube.

If the fits headers are required, then these should also be collected within the loop, as keywords such as crpix1,
crpix2, naxis1, and naxis2 are modified by read sdo to reflect the clip taken.

Note, while this tracking has been presented as a temporary program, for more general use it may be worth
converting it into a user defined program that can be easily reused in different cases.

Figure 7: An AIA 193 Å clip tracked at 12 hour intervals starting at 00:00 on 5th August 2010.

If there are not too many images, then they can all be viewed by something like

IDL> !p.multi=[0,6,3]
IDL> for n=0, nf-1 do plot_image, sqrt(ccube(*,*,n)), $

min=sqrt(100), max=sqrt(2500)

where !p.multi specifies the number of plots to a page (start with the first location, with 6 columns and 3
rows, e.g., figure 7). Otherwise, some other form of presentation (such as a movie) is required.

Note, IDL will persist with the multiplot window - wrapping round to the first location once it reaches the end
- until cancelled. This can be done with

IDL> !p.multi = 0

Exercise

Using the sequence of AIA 193 Å files on the memory stick, select a reference image and region of interest,
and clip all of the other files to that region. Plot the region as you see fit.

Can you extract the same region from the corresponding HMI files on the memory stick.

Hint, as HMI and AIA are at different resolutions, the required HMI x- and y-sizes will need to be recalculated,
this can be done with

- xsize2 = xsize*rindex.cdelt1/cindex.cdelt1
- ysize2 = ysize*rindex.cdelt2/cindex.cdelt2

Also, remember that HMI data may be upside down, so the appropriate HMI fits keywords in cindex will

22

have to be modified before using them for calculation. Once the new centre pixel has been calculated (xcenp2,
ycenp2), this must be rotated once more for selecting the correct portion of the upside down data in the file,
i.e.,

- xcenp2rot = cindex.naxis1 - xcenp2 - 1.0
- ycenp2rot = cindex.naxis2 - ycenp2 - 1.0

which can be used to calculate xlo and ylo.

Finally, once the clip has been extracted from a file, it should be rotated before being stored in the ccube array.

7 Making SDO image output

Displaying SDO data within SSWIDL is fine for personal viewing of SDO data, but sooner or later a standalone
image file will be required for logbooks, publications, talks, posters, and so on.

There are two basic options, a vector format such as postscript, or a bit-mapped format such as PNG or JPEG.
In both cases the actual SDO data is bit-mapped, any text, plot axes, plot annotations will come out smoother
in printed material in vector form, whereas correctly sized bit-mapped output tend to be better on computer
screens (e.g., talks, web pages).

7.1 Output as postscript

Figure 8: SDO data can be easily output into postscript files suitable for inclusion in text documents.

To write to a postscript file (e.g., figure 8), something like the following would be required:

IDL> set_plot, ’ps’
IDL> device, file=’304output.ps’, xsize=4, ysize=4, /inches, $

/color, bits=8
IDL> aia_lct, rr, gg, bb, wavelnth=304, /load
IDL> plot_image, sqrt(adata304(*,*,6)), min=sqrt(10), max=sqrt(1000), $

origin=-[(aindex304(6).crpix1-1)*aindex304(6).cdelt1, $
(aindex304(6).crpix2-1)*aindex304(6).cdelt2], $

23

scale=[aindex304(6).cdelt1,aindex304(6).cdelt2], $
xtitle=’X-postion (arcseconds)’, $
ytitle=’Y-position (arcseconds)’

IDL> device, /close
IDL> set_plot, ’x’

This creates a file that, when printed, will produce a 4 × 4 inch colour plot of the file in question, with the x-
and y-axes in arcseconds.

Any of the plot image commands found in this primer can be substituted into this set of commands, addi-
tionally, oplot and other graphics commands may appear as well.

The postscript file generated above will be quite large (perhaps around 33 MB), so it is worth considering
whether the image needs to be at full resolution. If a lower-resolution is acceptable, then the image can be
resized with either of

IDL> lrdata1 = rebin(adata(*,*,6), 1024, 1024)
IDL> lrdata2 = congrid(adata(*,*,6), 1233, 1233)

The rebin command is when the desired resize is a simple fraction/multiple of the original size (e.g., 1
8×,

1
4×, 1

3×, 1
2×, 2×, 3×, 4×, 8×, etc), or a whole pixel multiple/fraction. The congrid function will resize to

arbitrary sizes.

Exercise

Try writing out postscript images of different observations at different resolutions. These can be viewed under
Linux with something like gv.

7.2 Output as PNG, JPEG, etc

Figure 9: SDO data can be easily output into JPEG and PNG files suitable for inclusion on web pages and in
talks.

The following is one method of writing to a JPEG file (e.g., figure 9)

IDL> window, 30, xsize=4096, ysize=4096, /pixmap
IDL> aia_lct, rr, gg, bb, wave=304, /load
IDL> tv, bytscl(sqrt(adata(*,*,6)), min=sqrt(10), max=sqrt(1000))
IDL> trimg = tvrd(/true)
IDL> wdel, 30
IDL> write_jpeg, ’test_im_304.jpg’, trimg, true=1

24

The first line creates an imaginary graphics window in memory (reading/writing to an actual graphics window
can sometimes be flawed), the third line writes the image to the imaginary window (without any axes or text),
the fourth reads from the window into an array, the fifth deletes the imaginary window (it is a good idea to tidy
up memory usage when it is no longer needed), and the sixth line writes to a JPEG file (note, some versions of
IDL will write the file upside down, so the keyword /order must be included to correct this).

The quality of a JPEG can be controlled with the quality argument, e.g.,

IDL> write_jpeg, ’test_im_304.jpg’, trimg, true=1, quality=85

The quality argument takes a value between 0 (poor) and 100 (very high), and defaults to 75 if not specified.
The higher the quality, the larger the file size.

Writing a PNG has almost the same syntax, i.e.,

IDL> write_png, ’test_im_304.png’, trimg

Writing to and from a graphics window (even an imaginary one) is a useful way to build up a plot, but can
sometimes be slow. A quicker way to write just the image is

IDL> img = bytscl(sqrt(adata(*,*,6)), min=sqrt(10), max=sqrt(1000))
IDL> trimg = bytarr(3,4096,4096)
IDL> trimg(0,*,*) = rr(img)
IDL> trimg(1,*,*) = gg(img)
IDL> trimg(2,*,*) = bb(img)
IDL> write_png, ’test_im_304.png’, trimg

This method does not use any graphics windows (imaginary or otherwise) at all.

As with postscript files, it is worth considering the resolution of the image being written. Computer screens
have resolutions considerably smaller than 4096 × 4096, and it can often be sensible to scale the image to the
desired size at the outset. This can be done using rebin or congrid as shown above.

Exercise

Try writing out JPEG and PNG images of different observations at different resolutions.

8 Response function of the AIA telescopes

8.1 Wavelength response function

The AIA telescopes select the different wavelength bands using broad band filters. Each filter has a specific
response function which is typically centred on the wavelength of the observed spectral line. The wavelength
response functions are plotted in Figure 10 for six characteristic wavelengths.

To obtain the wavelength response functions try the following:

IDL> wave_resp = aia_get_response()
IDL> help, wave_resp, /str
IDL> help, wave_resp.a171, /str

which can be plotted with something like

IDL> plot, wave_resp.a171.wave, wave_resp.a171.ea
IDL> plot, wave_resp.a171.wave, wave_resp.a171.ea, xrange=[150,200]

It is noticeable that the filter is broader for larger wavelengths. It is clear that the 171 Å filter has a secondary

25

Figure 10: Wavelength response functions for six characteristic pass-bands, these are 94 Å, 131 Å, 171 Å,
193 Å, 211 Å, and 304 Å.

peak at 175 Å. Currently there is no response functions for the visible spectral lines.

8.2 Temperature Response function

A spectral line has a specific temperature of formation. Nevertheless, the broad band filters are responsible
for a temperature response function resulting from the wavelength range observed. The different temperature
response functions are summarised in Figure 11 for six characteristic wavelengths.

The temperature response functions can be obtained with

IDL> temp_resp = aia_get_response(/temp)
IDL> help, temp_resp, /str
IDL> help, temp_resp.a171, /str
IDL> plot, temp_resp.a171.logte, temp_resp.a171.tresp

Most of the temperature profiles show that an AIA image does not correspond to a unique temperature, but
mostly to two temperatures and a broad range of temperature. It is important for the interpretation of the AIA
images to understand at which temperature the plasma is observed. For instance a plasma seen in the 94 Å filter
has a temperature of 1 million degrees or close to 10 million degrees.

Exercise

Plot and examine the wavelength and temperature responses for other pass-bands. Can you modify the temper-

26

Figure 11: Temperature response functions for six characteristic pass-bands, these are 94 Å, 131 Å, 171 Å,
193 Å, 211 Å, and 304 Å.

ature plots so that the log10(Te) axis becomes a plain temperature axis?

27

