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ABSTRACT

We investigate coronal energy flow during a simulated coronal mass ejection (CME). We model the CME in the
context of the global corona using a 2.5D numerical MHD code in spherical coordinates that includes coronal
heating, thermal conduction, and radiative cooling in the energy equation. The simulation domain extends from 1 to
20 Rs. To our knowledge, this is the first attempt to apply detailed energy diagnostics in a flare/CME simulation when
these important terms are considered in the context of the MHD equations. We find that the energy conservation
properties of the code are quite good, conserving energy to within 4% for the entire simulation (more than 6 days
of real time). We examine the energy release in the current sheet as the eruption takes place, and find, as expected,
that the Poynting flux is the dominant carrier of energy into the current sheet. However, there is a significant flow
of energy out of the sides of the current sheet into the upstream region due to thermal conduction along field lines
and viscous drag. This energy outflow is spatially partitioned into three separate components, namely, the energy
flux flowing out the sides of the current sheet, the energy flowing out the lower tip of the current sheet, and the
energy flowing out the upper tip of the current sheet. The energy flow through the lower tip of the current sheet is
the energy available for heating of the flare loops. We examine the simulated flare emissions and energetics due to
the modeled CME and find reasonable agreement with flare loop morphologies and energy partitioning in observed
solar eruptions. The simulation also provides an explanation for coronal dimming during eruptions and predicts
that the structures surrounding the current sheet are visible in X-ray observations.

Key words: magnetic reconnection – magnetohydrodynamics (MHD) – Sun: coronal mass ejections (CMEs) –
Sun: flares

1. INTRODUCTION

One of the most intriguing questions in solar physics is how
energy is released during a coronal mass ejection (CME). A
typical CME releases on the order of 1032 erg of energy (e.g.,
Forbes 2000), and this energy is partitioned into the kinetic
energy of the plasma released into the heliosphere, work done
against gravity as the CME is ejected, heating of the associated
flaring loops, and radiation loss. Estimates from observations
(Forbes 2000; Emslie et al. 2005) suggest that similar amounts
of energy go into heating the flare plasma and accelerating the
CME, but the uncertainties in these estimates are large.

Many authors have used numerical models of CMEs to
address the question of the energy release by calculating global
energetics in simulated eruptions (e.g., Mikić & Linker 1994;
Linker et al. 2003; Manchester et al. 2004; MacNeice et al.
2004; Fan & Gibson 2007; Chen et al. 2007). These calculations
are useful for, e.g., determining the relationship between the
open and stored magnetic energy (Linker et al. 2003) required
for an eruption, or the difference in magnetic energy release
between eruptions initiated with the torus and kink instabilities
(Fan & Gibson 2007). However, until now, no attempt has been
made to track the conversion of magnetic energy into thermal
energy, including the effects of conduction and radiation, as
the magnetic field undergoes reconnection in the current sheet.
Quantifying the amount of thermal energy released in an
eruptive event and addressing the effects of conduction and
radiation are crucial steps for understanding observations of
flare emissions.

A previous quasi-analytical model of CME initiation
addressed the energy conversion in the current sheet in eruptive

events by assuming that the Poynting flux into the current sheet
is completely thermalized (Reeves & Forbes 2005; Reeves et al.
2007). This model produces realistic flare emissions, but many
simplifying assumptions are employed, including the assump-
tion that the Poynting flux is completely transformed into ther-
mal energy, and that the thermal energy flux is equally dis-
tributed such that half is directed toward the CME and half is
directed toward the flare loops. Recent analytical calculations by
Seaton (2008) of an asymmetrical current sheet suggest that, in
fact, this energy is not equally partitioned, but that more energy
is directed toward the CME. The configuration used by Seaton
(2008) consists of a flux rope on one end and reconnected flare
loops on the other, and in this case, he finds that the X-point
is not located at the center of the current sheet, but rather stays
close to the Sun’s surface during the entire eruption, causing the
energy partition to be unequal.

Energy conversion in CMEs has also been addressed using
numerical simulations that employ simplified energy equations
(Birn et al. 2008, 2009). These studies find that the dominant en-
ergy transfer consists of a conversion of the incoming Poynting
flux to enthalpy flux in the sunward direction and bulk kinetic
energy in the CME direction. These simulations, however, ne-
glect radiation, conduction, and coronal heating in the energy
equation, terms which are certainly important in the energy
transfer in flare loops and solar eruptions.

In this paper, we simulate a CME using a 2.5D MHD
numerical model that incorporates features not present in the
analytic model of Reeves & Forbes (2005). The simulation is
performed in the context of the global corona, in a spherical
coordinate domain that extends from 1 to 20 Rs. We first
solve the MHD equations to develop an equilibrium helmet
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streamer configuration (Linker & Mikić 1995). This model also
employs a realistic energy equation that includes conduction,
radiative losses, and coronal heating. Thus, we are able to
self-consistently follow the energy flow in the corona during
a CME. To our knowledge, a calculation of the energy budget
this detailed has not been done before. Details of the model are
given in Section 2. Section 3 explains the details of the energy
calculation, and the results and discussion are given in Section 4.
Conclusions are presented in Section 5.

2. MODEL DESCRIPTION

The MHD coronal code MAS includes a realistic energy equa-
tion that includes the effects of thermal conduction, radiation,
and coronal heating (Mikić et al. 1999). The model solves the
following form of the MHD equations in spherical coordinates:

∇ × B = 4π

c
J, (1)

1

c

∂B
∂t

= −∇ × E, (2)

E +
1

c
v × B = ηJ, (3)
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)
= −P∇ · v + S, (6)

where S consists of the heat sources and sinks:

S = −∇ · q − nenpQ(T ) + Hch + Hη. (7)

In the above equations, B is the magnetic field, J is the electric
current density, E is the electric field, ρ, v, p, and T are
the plasma mass density, velocity, pressure, and temperature,
respectively, g = −g0r̂Rs

2/r2 is the gravitational acceleration
(with Rs the solar radius), η is the resistivity, ν is the kinematic
viscosity, and k is Boltzmann’s constant. The method of solution
of Equations (1)–(7) has been discussed in detail in previous
papers, including simulations that incorporate the transition
region and upper chromosphere in the domain of the calculation,
as is the case here (Mikić & Linker 1994; Linker & Mikić 1997;
Lionello et al. 1999, 2001; Mikić et al. 1999; Linker et al. 2001,
2003).

In the equations governing energy conservation, Equations (6)
and (7), Q(T ) is a standard radiative loss function that has
a maximum near 105 K (see Athay 1986), ne and np are the
electron and proton number density (which are assumed to be
equal for the case of a hydrogen plasma treated here), m is
the proton mass, γ = 5/3 is the ratio of specific heats, and
Hη = ηJ 2 is the ohmic heating term. Since it is presently
not known in detail what heats the corona, the coronal heating
term Hch is a parameterized function. The form used in these
simulations is given by

Hch = H0e
−r/λ +

c1

2

[
1 + tanh

(
B/B0 − c2

c3

)] (
B

B0

)c4

, (8)

where H0, λ, c1, c2, c3, and c4 are parameters. In this case,
H0 = 1.07 × 10−6 erg cm−3 s−1, B0 = 2.2 G, λ = 0.7 Rs ,
c1 = 1.34 × 10−5 erg cm−3 s−1, c2 = 1.3, c3 = 0.25, and
c4 = 1. The first term in Equation (8) is similar to coronal
heating formulations used previously (Lionello et al. 2001;
Linker et al. 2001), and the second term simulates active region
heating in strong field regions.

The thermal conduction term in the energy equation is
collisional (i.e., Spitzer) in the lower corona, and collisionless
(see Hollweg 1978) higher up (Lionello et al. 2001), using the
following equations:

q =
{−κ0T

5/2b̂b̂ · ∇T r � 10Rsun
1

(γ−1)nekT v r � 10Rsun
, (9)

where κ0 = 9 × 10−7 erg K−7/2 cm−1 s−1 and b̂ is the unit
vector along B. The function varies between the two forms
of the conduction smoothly, with the contribution from the
collisional conductivity varying as 0.5(1 − tanh[0.2r − 2]) and
the contribution from the collisionless conductivity varying as
0.5(1 + tanh[0.2r − 2]), where r is in solar radii.

A typical reference value for the Alfvén speed at the base
of the model corona is VA = 480 km s−1 (corresponding to
|B| = 2.2 G and n0 = 108 cm−3). Therefore, the Alfvén travel
time (τA) is 1446 s for a distance of 1 Rs. The resistivity, η,
is uniform throughout the simulation region and corresponds
to a resistive diffusion time τR = 8 × 104 hr (for a length
scale of 1 Rs). Thus, the Lundquist number, which is given by
SL = τR/τA = 4πR2

s /τAηc2, has a value of 2 × 105. This
number is much smaller than the canonical value for the solar
corona, which is typically taken to be on the order of 108 or
larger (Craig & Litvinenko 2009), and thus the resistivity is
much larger in the simulations than in the real corona. However,
the value of η does not seem to affect the overall evolution of
the magnetic field (Mikić & Linker 1994; Linker et al. 1999).
An extensive discussion of the effect of this large resistivity on
the MHD equations can be found in Mikić & Linker (1994).
The kinematic viscosity, ν, is also uniform, and it has a value of
3.4×1015 cm2 s−1. This value corresponds to a viscous diffusion
time, τν = R2

s /ν, of approximately 103 τA.
The primary complication that arises from realistic modeling

of the heating terms in Equation (7) is that the balance between
the thermal conduction of heat from the corona and radiative
losses lower in the atmosphere produces a transition region
in which the temperature and density gradients are extremely
steep. These gradients lead to unrealistically long computing
times in a region in which the details of the steep gradients are
not as important as the fact that they are steep. We reconcile
this problem by using a technique that artificially broadens the
transition region, but maintains accurate values in the corona.
The analysis done by Lionello et al. (2009) shows that to
broaden the transition region, κ needs to be increased and
Q(T ) decreased at low temperatures such that the product
κ(T )Q(T ) is unchanged. It is important to emphasize here that
Lionello et al. (2009) find for one-dimensional calculations, this
modification has the effect of broadening the transition region
so that gradients there are computationally manageable, while
at the same time, the solution in the corona does not change
significantly from cases where this modification is not used. In
our simulation, for temperatures below Tc = 500,000 K, we
modify κ(T ) by multiplying by a factor of (Tc/T )3 and we
divide Q(T ) by that same factor in order to keep κ(T )Q(T )
constant.
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Figure 1. Br as a function of θ at the lower boundary (r = Rs ) initially (solid
line), and after the flux cancellation is finished (dashed line).

The initial and boundary conditions for the code are as
follows. The radial component of the magnetic field is specified
at the lower boundary, where r = Rs . In these simulations,
we use the sum of a weak dipole field and a stronger bipole
(Br0bip = 10 G) that is centered on the Sun’s equator as the initial
magnetic field state. We plot the initial radial magnetic field at
Rs as a function of θ in Figure 1. The treatment of the plasma
density and temperature in a calculation incorporating the
transition region, including the initial and boundary conditions,
is described in detail by Lionello et al. (2009). For this
calculation, a temperature of 50,000 K and a number density of
5 × 1012 cm−3 were specified. These numbers in fact constitute
an overestimate of the pressure in the lower transition region.
As discussed by Lionello et al. (2009), the exact value does not
determine the temperature and density in the coronal portion
of the solution (the specified coronal heating does), and an
overestimate is best to prevent evaporation of the chromosphere
if strong heating is present. The component of the velocity
parallel to the magnetic field is not specified but calculated using
the characteristic equations. A spherically symmetric solar wind
solution for the specified heating is used as the initial condition
for the plasma. At the upper radial boundary, at 20 Rs, the
flow is supersonic and super-Alfvénic, and the characteristic
equations are used for the boundary conditions such that only
outgoing waves are allowed there. The characteristic boundary
conditions allow plasma and magnetic fields to flow freely out
of the simulation domain. More details on the implementation
of the boundary conditions can be found in Linker & Mikić
(1997), Mikić et al. (1999), and Linker et al. (2001).

Equations (1)–(9) are solved on a nonuniform mesh that
allows us to concentrate grid points in regions of interest. For
this work, we use a grid with a spatial resolution of 400 ×
500 points on an r − θ mesh designed to have highest spatial
resolution at the equator, where the current sheet forms. In this
case, Δθ = 0.00117 radians at the equator and it increases
linearly with θ to Δθ = 0.045 between θ = 1.41 and θ = 0
radians and between θ = 1.72 and θ = π radians. The value of
Δr is 0.00052 Rs at the solar surface and it varies linearly with
r. At the outer boundary, r = 20 Rs , Δr = 0.3 Rs .

There are several phases of evolution in this simulation that
culminate in the eruption of a flux rope. First, we impose a
spherically symmetric solar wind solution on the initial magnetic

field configuration and integrate the time-dependent MHD
equations until an equilibrium is reached at 200 τA. This process
forms a helmet streamer, as in Linker & Mikić (1995), Linker
et al. (2001), and Linker et al. (2003). Then, a shear flow is
introduced in the φ direction as follows: vφ is linearly increased
from zero to 1.9 km s−1 from 200 to 210 τA, held constant at
1.9 km s−1 until 275 τA, and then decreased linearly back to zero
from 275 to 285 τA. This shear flow introduces a shear in the
magnetic fields in the φ direction, allowing magnetic energy to
build in the system. Finally, flux cancellation is initiated at the
boundary by linearly decreasing the strength of the bipole term
in the initial magnetic field configuration from 10 G to 8.5 G
between 285 and 305 τA. The final state of the radial magnetic
field at the lower boundary after the flux cancellation finishes is
shown as a dashed line in Figure 1. This cancellation causes a
flux rope to form, lose equilibrium, and erupt. The process used
here is similar to the simulated eruption using the polytropic
version of the same code reported by Linker et al. (2003).

3. ENERGY INTEGRAL FOR THE SIMULATION DOMAIN

We investigate energy flow in the simulation, including energy
flow into and out of the domain and into and out of specific
regions of interest. In order to do so, we rewrite Equation (6) in
the following way:

∂
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(
P

γ−1 + ρv2

2 + B2

8π

)
+ ∇ ·

[(
γP

γ−1 + ρv2

2

)
v + c

4π
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]
= −∇ · q − nenpQ(T ) + Hch + v · F, (10)

where F represents the forces due to viscosity and gravity, and
we have used the fact that

1

c
v · J × B + ηJ 2 = − c

4π
∇ · (E × B) − ∂
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(
B2
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)
. (11)

We integrate both sides of Equation (10) over the specified
volume and apply the divergence theorem to get the following
equation:
∫

∂

∂t
(E + K + W) dV

= −
∫

(nenHQ(T ) − Hch − ρv · g + νρ∇v : ∇v) dV

−
∫ [(

γP

γ − 1
+

ρv2

2

)
v +

c

4π
E × B + q − νρ∇v · v

]
· dA,

(12)

where the colon indicates a double-dot product. In this case,
E , K, and W are the internal, kinetic, and magnetic energy
densities, respectively, ν is the kinematic viscosity, and we have
used the relationship

v · Fν = v · ∇ · (ρν∇v) = ∇ · (νρ∇v · v) − νρ∇v : ∇v, (13)

where Fν is the viscous force. Note that all of the terms
that involved volume integrals of divergences in Equation (12)
have been converted into surface integrals using the divergence
theorem, and these integrals are used to calculate energy flow
over the surface of the simulation domain. We are able to
calculate all the terms in Equation (12) directly from outputs of
the simulations, and we describe the results of those calculations
over the entire simulation domain as well as in the local area of
the current sheet in the next section.
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Figure 2. Temperature (top panels), density (second row), toroidal current (third row), and flux contours (bottom panels) for several times during the simulation. The
times chosen are at the end of the relaxation phase (200 τA), at the end of the flux cancellation phase (305 τA), just after the formation of the current sheet (350 τA)
and later in the eruptive phase (360 τA). A magnetic field component perpendicular to the plane of the figure (Bφ ) is also present. The entire simulation domain spans
from 1 to 20 Rsun. Each frame in this figure shows a portion of that domain, extending to 5 Rs on the right-hand side and −2.5 to 2.5 Rs on the top and bottom.

4. RESULTS AND DISCUSSION

A summary of the evolution of the temperature, the current
density in the φ direction, and the density during the simulation
is shown in Figure 2. The first column on the left in Figure 2
shows these quantities in the helmet streamer at the end of the
equilibration phase, which lasts from 0 to 200 τA. The second
column shows the parameters at the end of the flux cancellation
phase, which is initiated at 285 τA and continues until 305 τA.
During this period, 15% of the flux is canceled, and a flux
rope is formed that contains field line dips that are capable
of supporting plasma from the chromosphere. Because we are

employing a realistic energy equation in our calculations, the
flux rope contains cool and dense prominence-like material.

The two rightmost columns in Figure 2 show the formation
of an X-point below the flux rope and the subsequent eruption
after equilibrium is lost. Associated with the eruption is a long
current sheet. Evidence for such long current sheets has been
found in observations from the Large Angle and Spectrometric
Coronagraph (Ko et al. 2003; Lin et al. 2005) on Solar and
Heliospheric Observatory (SoHO) and the Reuven Ramaty High
Energy Solar Spectroscopic Imager (Sui & Holman 2003).
Because of the large value of η used in the simulations, the
current sheet may be broader than those formed in the corona.
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Figure 3. Magnetic energy (solid line), internal energy (dashed line), kinetic
energy (dash-dotted line) over the entire simulation volume. Also included is
the energy budget diagnostic (dotted line), which is derived from integrating all
of the terms in Equation (12) as a function of time. The nearly constant value
of this quantity indicates that energy is conserved.

However, a recent study has suggested that CME-trailing current
sheets in the corona may be broader than expected due to
turbulence and the presence of the tearing mode instability (Lin
et al. 2007).

4.1. Energy Flow for the Full Simulation Volume

In Figure 3, we plot the magnetic, kinetic, and internal energy
(W , K, and E in Equation (12), integrated over the simulation
volume) as a function of time over the entire simulation volume.
The magnetic energy shows a slow increase during the streamer
relaxation phase due to opening of previously closed potential
field lines by the solar wind. As in previous simulations of
erupting flux ropes (Linker et al. 2001, 2003), we shear the
magnetic field (from 210 to 285 τA) in order to build up magnetic
energy in the streamer. Figure 3 shows that during the shearing
phase, the magnetic energy increases from about 30 × 1032 erg
to about 50 × 1032 erg.

The magnetic energy continues to increase slowly after the
flux cancellation is stopped. In this simulation, we have stopped
the flux cancellation very close to the marginal stability point
of the flux rope. Continued flux cancellation would lead to the
eruption of the flux rope, but in the simulation reported here, we
let the flux rope destabilize due to the small resistive diffusion.
The finite resistivity in the simulation causes the current to
decrease in the flux rope, which leads to a slow rise in the flux
rope between t = 305 τA and t = 347 τA, and its eventual
destabilization and eruption at 347 τA. We refer to this phase as
the metastable phase.

After the eruption at 347 τA, a current sheet forms underneath
the ejected flux rope. During this final phase of the simulation,
the magnetic energy decreases from about 60 × 1032 erg to
about 40 × 1032 erg. The kinetic energy increases by about
4 × 1032 erg during this phase as the CME accelerates. The
rest of the magnetic energy released goes into the gravitational
potential energy of the flux rope, and heating the plasma in the
corona.

In order to check the accuracy of the numerical method,
we assess the overall energy conservation in our algorithm.
The quantity labeled “Energy Budget Diagnostic” in Figure 3
is found at each time step by integrating all of the terms in
Equation (12) as a function of time to get energy, and then

summing them. This diagnostic includes the magnetic, internal,
and kinetic energy plotted in Figure 3, as well as viscous
dissipation, work done against gravity, changes in energy due to
radiation and heat sources, and the energy deposited in or carried
away from the simulation domain due to flows, e.g., conductive
flux, kinetic energy flux, enthalpy flux, and Poynting flux. Thus,
we have accounted for all the changes in energy in the simulation
volume, as well as the energy that enters and exits the simulation
volume over the boundary. In a perfect code, this sum would
be a constant as a function of time, indicating that energy is
conserved.

We find that during the relaxation, shearing, flux cancellation,
and metastable phases, energy is conserved quite well by the
code. During these phases, the total energy calculated by our
diagnostics is within 3% of the initial energy. This result is quite
good, considering that the total run time T is more than 300
Alfvén scale times and that there is significant energy transfer
in the system during these phases of the simulation.

The eruptive phase of the simulation is the phase in which
most of the energy losses occur. During this phase, the total
calculated energy is decreased by about 4% of the pre-eruption
energy. These losses are primarily due to the additional numer-
ical resistivity introduced by the use of upwind derivatives of
advective terms, which has the effect of diffusing the steep gradi-
ents that appear when the current sheet is present. If these losses
were considered to be entirely due to numerical resistivity, the
effective Lundquist number during the eruptive phase would be
approximately SL = 1.6 × 105, rather than the imposed value
of SL = 2 × 105.

For the energy diagnostics shown in Figure 3, we calculate
the energy over the entire simulation domain. We have also
calculated the energy over several sub-domains, where different
parts of the energy equation dominate. We find that the majority
of the error in the diagnostics during the non-eruptive phases
of the evolution is present in a sub-domain that contains
the transition region, with boundaries r0 = 1 Rs and r1 =
1.03 Rs . In this region, radiation and conduction dominate
the other energy terms, and small discretization errors in the
calculation of these terms dominate the errors. In the sub-domain
containing the corona and the heliosphere (r0 = 1.03 Rs to
r1 = 20 Rs), radiation and conduction no longer constitute the
biggest contribution to the energy, and the total energy calculated
by our diagnostics is within 1% of the initial energy in this sub-
domain, except during the eruption.

The good energy conservation properties of the code allow
us to make meaningful interpretations of energy flow and
conversion in the simulation. In particular, the major conversion
of magnetic energy (20 × 1032 erg) into kinetic, thermal, and
other forms is significantly larger than the energy error (∼2 ×
1032 erg).

Figure 4 shows the coronal heating, radiation, and conduction
terms from the energy equation for the whole simulation
volume. During the streamer formation phase, these terms
remain relatively constant. The coronal heating term (which
is proportional to |B|) begins to rise during the shear phase,
due to the introduction of the longitudinal component of the
magnetic field, Bφ . During the flux cancellation phase, it
continues to rise, but not as steeply. Just after the formation
of the current sheet, there is a spike in the coronal heating term
as the eruption transports magnetic field farther out into the
corona. Then, the heating decreases as the eruption proceeds
and the magnetic fields surrounding the flux rope become
weaker.
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line), coronal heating (dash-dotted line), and radiative loss (dotted line) terms
integrated over the entire simulation volume.

The largest radiative losses occur during the flux cancellation
phase, when dense material at several hundred thousand degrees
K is injected into the corona during the formation of the
prominence-like region. After the eruption of this region and
the formation of the current sheet, the radiative losses decrease
as the plasma in the flare arcade heats up and the prominence-
like material disperses. The conductive losses are surface terms
in Equation (12), and so we show these losses at the boundaries
of the simulation volume at r = RS and r = 20RS . There are
no significant losses due to conduction at these boundaries.

4.2. Energy Flow in the Current Sheet

In order to ascertain the details of the energy conversion
occurring in the current sheet during the evolution of the
eruption, we draw a control volume around the current sheet
and calculate the energy flow over its boundaries, using the
surface integral term in Equation (12). The energy flow over the

boundaries of the control volume includes energy flow due to
conductive heat flux, Poynting flux, enthalpy flux, kinetic energy
flux, and viscous energy flux. The coronal heating, radiation,
gravitational potential energy, and the change in the internal,
kinetic and magnetic energies contribute to the rate of change
of the energy in the volume of the current sheet.

We first calculate the energy estimate in a fixed control volume
centered on the equator in the region of the current sheet to
ensure that energy is conserved. The r boundaries of this control
volume are set at r0 = 1.03 Rs and r1 = 2.0 Rs . The control
volume has a width of 12 mesh points in the θ direction, and it
has an annulus shape because the numerical code is symmetric
in the φ direction. The r and θ boundaries of the control volume
are shown schematically in Figure 5. In this small, fixed control
volume, we find that the energy is constant during the times
preceding the eruption. During the formation of the current
sheet, the losses are well accounted for by increased numerical
dissipation, as in the larger volume described in the last section.

We next examine the energy flows in the current sheet as
a function of time. Because we need to follow the evolution
of the current sheet, we must define a control volume that
changes with time. This changing control volume makes the
energy conservation harder to follow, but the calculations with
the static control volume give us confidence that energy is being
conserved. The current sheet is growing as a function of time in
our simulations, so the length of the control volume surrounding
the sheet changes with time. We define the r boundaries of the
control volume as the r values where there are minima in Jφ

on either side of the maximum value. The values of r0 and
r1 are initially 1.036 Rs and 1.1 Rs, respectively, at τA = 347.
Like the static control volume described above, the current sheet
control volume has a width in the θ direction of 12 mesh points
and is annular in shape. We calculate the energy flux over the
boundaries of the control volume in the rest frame of the Sun,
since we are ultimately interested in the energy flux available to
the post-flare loops for heating.

The calculated energy flow in and out of the control volume
for our simulations is shown in Figure 6. There is a net inflow of
energy into the current sheet is in the θ direction, and there is a

theta boundary
Cond_th
Poynt_th

r0 boundary
cond0
poynt0

r1 boundary
cond1
poynt1

volume terms
heating     gravity
radiation   viscosity
dKE/dt      dW/dt
dE/dt

theta boundary
Cond_th
Poynt_th

Figure 5. Flux contours from a potion of the simulation overlaid with the location of the control volume containing the current sheet. We label the boundary closest
to the Sun’s surface as r0 and the boundary farthest from the surface as r1. For the fixed control volume, r0 = 1.03 Rs and r1 = 2.0 Rs . For the current sheet control
volume, r0 and r1 are initially at 1.036 Rs and 1.1 Rs, respectively, and they change as the current sheet evolves.
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Figure 6. Total energy flow over the θ (solid line), r0 (dashed line), and r1
(dotted line) boundaries. There is a net flow of energy into the θ boundary and
out of the r boundaries.

net outflow of energy at the r0 and r1 boundaries. Immediately
after onset almost all of the outflow energy is channeled through
the upper boundary at r1. During the intermediate stages of the
evolution, the amounts of energy exiting the current sheet over
the two r boundaries are similar, and in the later stages the energy
flow at r1 exceeds the energy flow at r0 by about a factor of 2.

In Figure 7, we show the total energy flow over the two
θ boundaries of the control volume encompassing the current
sheet. The major contribution to the inflow of energy over this
boundary is the Poynting flux, which is carried into the current
sheet with the reconnecting magnetic fields. Kinetic energy due
to reconnection inflow contributes to the influx of energy over
the θ boundary as well, but this energy flow is small compared
to the Poynting flux because the velocity in the upstream region
is small.

Near the peak of the energy release, approximately half of
the incoming Poynting flux is converted into heat conduction
and viscous flow. The heating of the plasma in the current sheet
generates a significant heat flux through the theta boundary of
the current sheet because of the field-aligned thermal conduc-
tion. This heat flux is responsible for the relatively large width
of the high-temperature structure below the flux rope visible
in Figure 2 and is consistent with previous calculations that
show that conduction is responsible for a thermal halo that ex-
tends outside the boundaries of the current sheet (Yokoyama &
Shibata 1997; Seaton & Forbes 2009). There is also a signifi-
cant transport of energy from the current sheet into the upstream
region because of viscous drag. The high-speed outflow within
the current sheet drags some of the outside plasma along with
it. The kinetic energy added to the upstream flow by this means
is labeled as “viscosity” in Figure 7. The shear viscosity in the
code that causes this effect is very likely much larger than that
which occurs in the corona actually (see Hollweg 1986). The
shear viscosity, like the electrical resistivity, is so small in the
corona that it cannot be realistically modeled in present-day
simulations.

Previous work used a semi-analytical loss-of-equilibrium
CME model to determine the energy input into post-flare loops
(Reeves & Forbes 2005; Reeves et al. 2007). While conductive
losses are considered in the evolution of the flare loops in these
models, the conduction of heat out of the current sheet is not
explicitly calculated. Instead, it is simply assumed that half of
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Figure 7. Energy flow over the θ boundary. Shown are the total energy (solid
line), the conduction flux (dotted line), the enthalpy flux (short-dashed line), the
Poynting flux (dot-dashed line), the kinetic energy flux (dot-dot-dashed line),
and the viscosity (long-dashed line). Negative values indicate energy flow into
the sheet, and positive values indicate energy flow out of the sheet.

the Poynting flux into the current sheet is somehow deposited
into the flare loops. Figure 7 shows that the fraction of the heat
flux through the sides of the current sheet varies considerably
with time. Furthermore, not all of this energy necessarily reaches
the surface. In our 2.5D simulation, most of the field lines
threading the current sheet lie above the X-line, and these lines
are contained within a magnetic island that does not reach the
surface.

In Figure 8, we show the different types of energy that flow
across the boundaries at r0 and r1. For the lower boundary, r0,
the majority of the energy flowing over the sunward boundary
of the control volume is conductive heat flux. There is also a
small amount of the Poynting flux through the lower boundary
early in the event. The kinetic energy flux is not shown for
the r0 boundary in Figure 8(a) because it is several orders of
magnitude smaller than the other terms.

The conductive energy flux through the r0 boundary is the
energy flux available for heating of the plasma in the flare loops.
Integrating this energy flux over the duration of the eruption
gives an energy of approximately 3.0 × 1032 erg. It must be
remembered, however, that this simulation is axisymmetric, and
thus models a flux rope ringing the Sun. In order to compare
the energy release to real events, we take a portion of the flare
arcade with a typical length of 100,000 km. For this flare arcade,
our model gives a total conductive energy flux through the
r0 boundary of 6.8 × 1030 erg. Estimates from observations
typically give a value for the thermal energy in the flare loops
on the order of 1 × 1031 erg (Moore et al. 1980; Emslie et al.
2005), although these numbers can vary by as much as an order
of magnitude or two based on factors such as the magnetic field
strength. Given this variation in observed thermal energies in
flares, the simulation produces a reasonable amount of energy
to produce the heating observed in flare loops. More discussion
about the energy partition is given in the next section.

We show the flow of energy though the r1 boundary in
Figure 8(b). The bulk of the energy flow at this boundary at
the beginning of the event is due to the Poynting flux. This
circumstance is startling at first, given that the reconnection
process should convert the magnetic energy in the current
sheet into kinetic and thermal energies. However, the bulk of
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Figure 8. Energy flow over the r0 boundary (a) and r1 boundary (b) of the control volume. For each plot, we show the total energy through the boundary (solid line),
the conduction flux (dotted line), the enthalpy flux (dashed line), and the Poynting flux (dot-dashed line). The kinetic energy flux (dot-dot-dashed line) is shown in the
plot of the energy flow over the r1 boundary. It is not shown in the plot of the energy flow over the r0 boundary, since it is a negligible fraction of the total energy
flow. The viscosity term is negligible for both plots.

this Poynting flux term is due to the radial transport of the
φ component of the magnetic field. This field component is
created during the shearing phase, and since it points in the
same direction over the current sheet volume, it is not annihilated
during reconnection as the eruption progresses.

Toward the end of the eruption, the majority of the energy
flux over the r1 boundary is due to the kinetic energy flux. This
elevated kinetic energy flux is attributable to the reconnection
outflow jet. In contrast, the outflow jet at the r0 boundary is so
small in magnitude that we have not plotted the kinetic energy
flux over this boundary in Figure 8(a). The disparity in the
magnitude of the upper and lower plasma jets can be explained
by the location of the X-point in the current sheet. The X-point
forms very low in the current sheet, near the lower boundary,
and it remains near the lower boundary throughout the evolution
of the event. This circumstance may be a consequence of the
fact that the field lines diverge rapidly with height. The height at
which the X-line is observed in the simulation tends to be close
to the location where the tangential magnetic field outside the
current sheet has its maximum value. This location, sometimes
referred to as the “pinch point,” is the point where the external
magnetic field lines in the immediate upstream inflow regions
osculate the sheet (Seaton 2008).

4.3. Flare Emissions and Energy Budget for the Simulated
Eruption

Using the temperatures and densities output by our simula-
tions, we can compute the X-ray and extreme ultraviolet (EUV)
emissions for the flare loops associated with our modeled CME
(see, e.g., Mok et al. 2005; Lionello et al. 2009). The emissions
in a given instrument can be found by using the equation

I =
∫

n2
e(l)fi(T (l), ne(l))dl, (14)

where I is the intensity observed in the telescope in units of
DN s−1, ne is the electron density, fi(T , n) is a function that
takes into account the atomic physics and instrument response
function, and the integral is done along the line of sight,
l. To do these calculations, we have assumed a flare arcade

length of 1 × 105 km. We simulate intensities for the Extreme
Ultraviolet Imaging Telescope (EIT) on the SoHO and the
X-ray telescope (XRT) on the Hinode satellite. EIT is a narrow-
band imaging telescope that observes wavelengths in the EUV
(Delaboudinière et al. 1995). XRT is an X-ray telescope with
several broadband filters that image plasma in the 2–15 MK
range (Golub et al. 2007). The fi functions for these telescopes
are easily obtainable from the SolarSoft IDL software.

Simulated images in the EIT 195 Å filter and the XRT thin-Be
filter, as well as temperature and density, are shown in Figure 9
for four different times after the eruption begins. Reasonable
count rates for the two instruments are obtained. Early in the
eruption, the prominence-like material is dense and cool, and
there is bright emission in the EIT 195 Å line, but the material
is not seen at all in the X-rays because it is too cool.

As the event progresses to later times (370 τA and 390 τA

in Figure 9), we see bright, narrow flare loops forming in the
EIT 195 Å. This morphology is common in EUV observations of
flares (e.g., Warren 2000), and it is due to the narrow temperature
sensitivity of the filters on the EIT telescope. The broadband
response of the XRT thin-Be filter leads to cusp-shaped loops in
the simulated XRT images. This loop morphology is commonly
observed in X-ray observations of flares (e.g., Tsuneta et al.
1992; Forbes & Acton 1996; Reeves et al. 2008).

The plasma in the current sheet is between 5 and 10 MK, and
it is clearly visible in the X-ray images, even though the density
is low in the sheet. The emissions from the current sheet are
2–3 orders of magnitude fainter than the flare loops, but are still
bright enough to be detected with a telescope with the dynamic
range of XRT. Recently, XRT was able to observe a current
sheet-like structure trailing a CME because the associated flare
was occulted by the limb of the Sun (Savage et al. 2010).

Another feature evident in the emission images in Figure 9
is a decrease in emission in the areas outside the flare loops
and current sheet as the eruption progresses. This decrease is
particularly noticeable when comparing the images at 352 τA

and 370 τA. This decrease in emission may correspond to the
coronal dimming often seen in X-ray (Sterling & Hudson 1997)
and EUV (Zarro et al. 1999; Bewsher et al. 2008) images
following a CME. Dimming is thought to be caused by density
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Figure 9. Simulated EIT 195 intensity (top panels), simulated XRT thin Be intensity (second row), log of density (third row), and temperature (bottom panels) for
several times after the eruption of the CME. The images have a field of view of 0.5 Rs and the intensity images are log scaled.

depletion as the CME erupts, evacuating the corona beneath it.
In the simulation shown in Figure 9, there is a decrease in the
density surrounding the flare loops and current sheet between
352 τA and 370 τA, confirming the density depletion hypothesis.

We calculate the energy partition in the simulated eruption
in order to compare with observations. We calculate magnetic,
kinetic, and gravitational potential energies due to the CME by
taking the difference in these quantities pre-eruption (τA = 347)
and post-eruption (τA = 393). The results are shown in Table 1.
We divide the energies into similar categories as in Emslie
et al. (2005): primary energy (i.e., the magnetic field) and final
energies due to the flare (radiative energy) and the CME (kinetic
energy and gravitational potential energy). Since our model

is an MHD model, we cannot address energies of accelerated
electrons and ions. Emslie et al. (2005) refer to these energies
as “intermediate” energies because much of the energy in these
non-thermal particles would eventually be converted into energy
that heats plasma and causes it to radiate.

To calculate the energy in the CME, we use a control volume
that excludes the chromosphere and as much of the solar wind
plasma as possible, since these regions are not typically included
in calculations of the energy partition that are derived from
observations (i.e., Emslie et al. 2004, 2005). This control volume
is shown on the top panel of Figure 10, and it has dimensions
defined by r0 = 1.03 Rs , r1 = 20 Rs , and Δθ = 0.67 radians of
arc. For these calculations, we assume that the event subtends
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Table 1
Comparison of Energies in Simulation and Observations

Energy Type Simulationsa Observationsb

Primary
Magnetic 31.5 32.3, 32.3

CME
Kinetic 30.8 (30.6) 32.3, 32.0
Gravitational Potential 31.7 (31.2) 30.7, 31.1

Flare
Radiated
From GOES plasma 29.4 31.3, 31.0
Total from simulation 30.6

Notes. Energies are in log10 (erg).
a Simulation values in parentheses are calculated by subtracting a
background corona from densities used in calculation.
b Observation data from the flares of 2002 April 21 (GOES class
X1.5) and 2002 July 23 (GOES class X4.8), respectively. From
Emslie et al. (2005).

0.14 radians in the azimuthal direction. This assumption is the
same as the assumption of a flare arcade length of 105 km that
was used above.

We find that the total kinetic energy in the simulated eruption
is two orders of magnitude smaller than in the eruptions observed
by Emslie et al. (2005). The number for the simulation is
reasonable, however, considering that the CMEs studied by
Emslie et al. (2005) had speeds of 2300 km s−1 and 2600 km s−1

at 10 Rs, and the simulated CME has a speed of only 260 km s−1

at 10 Rs. CMEs with slower velocities observed by Vourlidas
et al. (2000) have kinetic energies of the same order as the kinetic
energy in our simulation.

The energy due to gravitational potential energy in the
simulations is higher than in the eruptions studied by Emslie
et al. (2005) and Vourlidas et al. (2000). This difference is
because we are able to account for all the mass in the simulation,
including particles that are elevated due to the solar wind, while
the calculations that are based on observations rely on mass
estimates from coronagraph observations and only consider
the mass of the CME. A typical method for estimating the
mass in a CME using coronagraph observations is to subtract
a pre-eruption image that is representative of the background
corona from the data containing the CME (Vourlidas et al.
2000; Emslie et al. 2004). If we approximate this background
subtraction by subtracting the density from a time near the end
of the shearing phase in the simulation (τA = 270) from the
density used in the calculation of the gravitational potential
energy, we get 1031.2 erg, shown in parenthesis in Table 1. A
similar calculation is performed for the kinetic energy, but the
background subtraction only reduces this number by a factor of
about 1.7.

We also calculate the radiated energy due to flare emissions.
For this calculation, we use a small control volume that
encompasses only the flare loops. The dimensions of this volume
are defined by r0 = 1.03 Rs , r1 = 1.18 Rs , and Δθ = 0.23
radians of arc. The boundaries of this control volume are shown
on the bottom panel of Figure 10.

We use two methods to determine the radiated energy. First,
we directly calculate the radiated energy from the information
output by the simulations. We find that the total radiative energy
output in the flare loops is 4.2 × 1030 erg, which is 2/3 of
the conductive flux found passing through the lower boundary
of the current sheet in the last section. Second, we simulate
emission from the GOES 1–8 Å and 0.5–4 Å bands in order

Figure 10. Regions of the simulation domain, shown as white wedges, used to
calculate the energy budget for the CME (top) and the radiated energy from the
flare (bottom). The images are density and the contours are the magnetic flux at
t = 380 τA.

to estimate the radiated energy as it would be done from
observations. This method uses the assumption that there is
negligible conductive cooling, as in Emslie et al. (2005). The
numbers for both methods are reported in Table 1. We find that
the radiated emissions for the simulated flare are several orders
of magnitude lower than the estimates in Emslie et al. (2005),
which is to be expected since they examined X flares, and the
simulated eruption is a much weaker event. Additionally, we
find that the estimate of the radiated energy from GOES light
curves is an underestimate of the total radiative losses by a factor
of about 20. This underestimation is due to radiation in EUV,
optical and other wavelengths not accounted for by the GOES
method.

5. CONCLUSIONS

We have simulated a CME using the 2.5D MHD coronal
code MAS, which includes thermal conduction, radiation, and
coronal heating. This code allows us to realistically model
the thermodynamics in the corona, and thus account for all
the sources and sinks of energy that would be present on the
Sun. We apply energy diagnostics to this numerical simulation
and find that the energy is conserved to within 3% during the
stages leading up to the eruption, and to within 4% during the
eruption, when the current sheet is formed. These errors are most
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likely due to the additional numerical dissipation associated with
numerical diffusion.

We use this simulation to examine the energy released in the
current sheet during an eruption. Previous examinations of this
energy release using semi-analytic loss-of-equilibrium models
have been done by Reeves & Forbes (2005) and Reeves et al.
(2007). However, these models use the simplifying assumptions
that the thermal energy in the flare is derived entirely from the
Poynting flux swept into the current sheet, and moreover, that
the energy flux out of the current sheet is equally partitioned in
the flare loop and CME directions.

Examining our numerical simulation, we find, as expected,
that the Poynting flux is the dominant energy flowing into the
sides of the current sheet. There is also a large outflow of
energy through the sides of the current sheet due to the effects
of thermal conduction and viscosity. In our two-dimensional
model, a significant portion of the energy transported through
the sides of the sheet becomes trapped in the magnetic field
lines that encircle the flux rope, and this trapped energy does not
contribute to the heating of the flare loops. In three-dimensional
models (e.g., Fan & Gibson 2007; Török & Kliem 2005; Lynch
et al. 2008), most field lines within the magnetic island map to
the solar surface. Therefore, our two-dimensional simulation is
likely to underestimate the thermal energy transferred from the
reconnection region into the flare ribbons and loops.

We also find that the total energy flow over the current sheet
boundary near the flux rope (r1) is greater than the total energy
flow over the current sheet boundary at the flare loops (r0).
Early on, before the Poynting flux into the sheet peaks, more
than twice as much energy flows out the top boundary as flows
out the bottom. However, by the time the Poynting flux peaks,
the amounts are roughly the same. During the early phase, the
principal component of energy transported through the lower
boundary is the heat flux, but the principal component of energy
transported though the upper boundary is the Poynting flux
associated with the azimuthal magnetic field. The field that
reconnects during the initial phase of the eruption is highly
sheared, and this shear produces a strong out-of-plane, azimuthal
field (i.e., a guide field) in the current sheet. However, by the
time of the peak in the Poynting flux, most of this azimuthal field
has been expelled from the sheet and the contribution from the
Poynting flux is small. During this later phase, kinetic energy is
the dominant form of energy transported out the upper boundary,
but the dominant form at the lower boundary is still thermal
conduction.

The speed of the upward reconnection jet is always much
faster than the speed of the downward jet. In some previous
planar simulations (e.g., Forbes 1986), the asymmetry in the
speeds of the downward and upward jets was found to depend
strongly on the plasma beta. For plasma betas on the order of 1,
or larger, the downward jet tends to be suppressed, but for plasma
betas much less than 1 (typically 0.1 or smaller), downward and
upward jets of equal strength can appear if the jet flow becomes
supermagnetosonic with respect to the fast-mode wave speed
(Forbes & Malherbe 1991). However, the presence of a strong
guide field greatly inhibits the formation of a supermagnetosonic
jet (Forbes et al. 1989) and this may be one of the main reasons
that a strong downward jet never formed in our simulation.

We simulate the X-ray and EUV flare emissions associated
with this eruption. We find that the simulated emissions produce
flare loop morphologies that are similar to observed structures,
including narrow, bright EUV loops, and cusp-shaped X-ray
loops. The simulation produces a dimming effect seen in the

regions around the simulated flare that is similar to coronal
dimmings seen in the aftermath of observed eruptions. In our
simulation, this dimming effect is due to an evacuation of plasma
as the CME erupts. We also find that structures associated with
the current sheet should be visible in the soft X-rays, given
sufficient sensitivity.

We examine the global energy partitioning in the simulated
eruption. The values for the various types of energy calculated
in this way are reasonable given that the simulated eruption is
weaker than most observed events where this kind of calculation
has been done. We find that calculations of the radiative losses
using only X-ray observations (i.e., the GOES 1–8 Å channel)
underestimate the real radiative losses by a factor of about 20.

In this study, we have taken advantage of the simplicity and
symmetry afforded by a 2.5D simulation. In the future, we plan
to do a similar analysis on more realistic three-dimensional
models of coronal eruptions, which are considerably more
complex.
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