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[1] We examine phenomena associated with eruptions in the two different regimes of
the solar corona and the terrestrial magnetosphere. We find striking similarities between
the speeds of shrinking magnetic field lines in the corona and dipolarization fronts
traversing the magnetosphere. We also examine the similarities between supra-arcade
downflows observed during solar flares and bursty bulk flows seen in the magnetotail
and find that these phenomena have remarkably similar speeds, velocity profiles, and
size scales. Thus we show manifest similarities in the magnetic reconfiguration in
response to the ejection of coronal mass ejections in the corona and the ejection of
plasmoids in the magnetotail. The subsequent return of loops to a quasi-potential state in
the corona and field dipolarization in the magnetotail are physical analogs and trigger
similar phenomena such as downflows, which provides key insights into the underlying
drivers of the plasma dynamics.
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1. Introduction

[2] Magnetic reconnection has been defined as the topo-
logical reordering of magnetic field lines caused by a local
disruption of the ideal conditions that keep the plasma
frozen to the magnetic field [Biskamp, 2000; Priest and
Forbes, 2000]. Magnetic reconnection allows rapid conver-
sion of magnetic energy into kinetic and thermal energy, and
thus it plays an important role in astrophysical plasmas
throughout the universe, including in our local environment.
The Earth’s magnetosphere and the corona of the Sun are
two local environments where magnetic reconnection is an
important process. Magnetic reconnection is the favored
explanation for solar flares because it is the only mechanism
that satisfactorily explains observational phenomena that
occur during flares, including separating flare ribbons seen
in Ha, cusp-shaped arches of soft X-ray loops, and hard X-
ray sources at flare loop tops and footpoints [e.g., Priest and
Forbes, 2002]. Similarly, magnetic reconnection is also a
viable explanation for substorms, since it is consistent with
the sudden release of energy, the dynamics of the growth

phase and expansion phase onset, and the topological
magnetic field changes that have been observed to accom-
pany substorms [e.g., Coroniti, 1985].
[3] In this paper, we draw parallels between posteruption

phenomena that take place in long duration solar flares and
substorms [see, e.g., Priest and Forbes, 2000]. The coronal
phenomena we focus on are predominantly found in long-
duration flares (the class of flares commonly associated with
coronal mass ejections) rather than compact or confined
flares, although magnetic reconnection is probably involved
in both flare classes. Figure 1 shows schematic drawings of
magnetic reconnection events in the magnetosphere and
corona that lead to the posteruption phenomena that we
will study. Analogies between solar flares and magneto-
spheric substorms have been drawn before [e.g., Akasofu,
1979, 1985], but in this work we focus on recent, more
detailed observations of both phenomena.
[4] One hurdle that must be overcome before we can

make fruitful comparisons of solar and magnetospheric
phenomena is one of nomenclature. The magnetospheric
and solar communities use different terms for phenomena
that are actually the same when the underlying physics is
considered. Often these terms are based on prominent
morphological or phenomenological characteristics present
in the original observations. For instance, magnetic recon-
nection is widely accepted in the solar community as the
driver of solar flares, and a consequence of this reconnec-
tion is the relaxation of magnetic field lines into a more
potential shape. This process was originally termed ‘‘field
line shrinkage’’ by Švestka et al. [1987] because of the way
that field lines shrink in height as they become more
potential. The magnetospheric community, on the other
hand, refers to the relaxation of a stretched magnetic field
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into a field that is more dipolar (i.e., more potential) as
dipolarization. In essence, dipolarization and field line
shrinkage are terms that refer to the same phenomena.
[5] Another obvious challenge when comparing solar and

magnetospheric phenomena is that the kinds of observations
that are possible in each environment lead to measurements
of very different parameters. In the magnetosphere, many
satellites (e.g., IMP satellites, Cluster, GEOTAIL, THEMIS)
can measure in situ flows and magnetic fields. These
measurements give a wealth of information about the state
of the local plasma but give little or no information about
the spatial variations of the plasma parameters or global
morphologies. Observations of the corona are done remotely
via imaging or spectroscopic instruments in space or on the
ground. These instruments can give temperature and density
information about the plasma on the Sun, although generally
at spatial resolutions of no better than one arsec (725 km).
These instruments also provide good spatial information
about the overall morphological features of solar phenomena.
However, information about the magnetic field in the corona
is lacking in these measurements, and thus the magnetic field
can only be inferred though motions of the plasma or
extrapolations from measurements of the magnetic field in
the photosphere. Furthermore, the distance along the line of
sight is often difficult to infer, so in most cases the spatial
information is reduced to two dimensions.
[6] We cannot blindly compare all the phenomena that we

see. We must look for defining physical parameters that will

allow us to accurately represent the system. In both sub-
storms and flares, magnetic reconnection plays a key role,
thus we will focus on quantities associated with reconnec-
tion processes. The Alfvén speed, length scales, plasma b,
magnitude of the magnetic field, and the density of the
surrounding plasma are all considered in the following
discussions. In Table 1, we give typical plasma parameters
for the magnetosphere and the corona. Although the plasma
density, magnetic field strength, and plasma beta are all
orders of magnitude different in the corona and magneto-
sphere, the Alfvén speeds (and hence the Alfvén Mach
number) and the length scales are remarkably similar. We
shall argue that it is these quantities that govern the behavior
of similar posteruption phenomena observed in both the
corona and the magnetosphere.
[7] In section 2 we compare observational results pertain-

ing to field line shrinkage in the corona and dipolarization in
the magnetosphere. In section 3, we compare supra-arcade
downflows seen above postflare arcades with bursty bulk
flows in the magnetosphere. Discussion and conclusions are
presented in section 4.

2. Field Line Shrinkage and Dipolarization

[8] The term ‘‘shrinkage’’ for flares in the solar corona
was coined by Švestka et al. [1987], who noticed that cool
postflare loops observed in H-a never reached the heights
of hotter loops observed in X rays. They postulated that the
field lines containing the radiating plasma must have shrunk
as they cooled, so that we observe the cool loops at lower
altitudes than the hot ones. There have been several subse-
quent observations of field line shrinkage in solar flares and
coronal arches using SXT on Yohkoh [Forbes and Acton,
1996; Hiei and Hundhausen, 1996], RHESSI [Sui and
Holman, 2003; Sui et al., 2004; Veronig et al., 2006] and
the X-Ray Telescope (XRT) on the Hinode mission [Reeves
et al., 2008]. These studies show that the speed of the field
line shrinkage is on the order of 50 km s�1 for loops with
high altitudes above the solar surface and can be as low as
2–3 km s�1 for lower-lying loops.
[9] An example of an XRT observation of field line

shrinkage for a flare that occurred on 5 May 2007 is shown
in Figure 2. This figure shows two images of a set of flaring
loops on the disk, taken about 9 min apart. The bright loops
in the arcade in the earlier image, taken at 2236:32 UT, are
cusp-shaped. In the later image, taken at 2245:50 UT, the
loops have a more rounded shape. A difference image of
the two data sets (also shown in Figure 2) clearly shows the
difference in loop shape and altitude. This shape change is
indicative of the field lines relaxing (shrinking) to a more
potential state. The speed of the field line shrinkage was
found to be about 5 km s�1 for the loops shown in Figure 2,

Figure 1. (top) The magnetosphere with a magnetotail
reconnection site and (bottom) a solar flare reconnection
point in the corona. The drawings are not to scale although
the systems do have similar length scales.

Table 1. Plasma Parameters for the Magnetosphere and the Corona

Corona Magnetosphere

Temperature 106 K 107 K
Density 1010 cm�3 1 cm�3

Magnetic field 10–100 G 10�3 G
Plasma b 0.001–0.01 1
Length scale 1000 km 1000 km
Alfvén speed 100–1000 km s�1 100–1000 km s�1
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and fainter, higher altitude loops were found to shrink at a
speed of about 50 km s�1 in this same event [Reeves et al.,
2008].
[10] Observations of dipolarization in the magnetosphere

are necessarily somewhat indirect, since measurements are
made in situ by spacecraft orbiting the Earth, allowing
detailed observations of the plasmas and fields locally but
making the global context difficult to discern. Nonetheless,
dipolarization has been inferred from observations of
increases in the pole-aligned magnetic field [e.g., Hughes
and Singer, 1985; Hughes, 1988; Liou et al., 2002]. This
dipolarization is accompanied by a disruption of the cross-
tail current [McPherron et al., 1973]. An example of a
dipolarization observation in the magnetosphere from the
study of Hughes [1988] is shown in Figure 3. Figure 3
shows magnetometer data from three satellites in geosy-
chronous orbit during a substorm onset. Increases in the Bz

component of the field indicate that the field is becoming
more dipolar, since Bz points in the direction of the Earth’s
dipole.
[11] Speeds of the dipolarization front are difficult to

observe in the magnetosphere because of the in situ nature
of the measurements, but multispacecraft data have recorded
dipolarization speeds of 100–200 km s�1 at 8–9 RE [Ohtani,
1998], and recent analyses of multispacecraft data from
the Cluster mission have determined the dipolarization
speed in one event to be about 25 km s�1 at 5 RE [Apatenkov
et al., 2007] and 77 km s�1 at 14.5 RE in another event
[R. Nakamura et al., 2002]. Thus there is considerable
overlap between the speeds observed for dipolarization
fronts in the magnetosphere, and the speeds of shrinking
magnetic fields observed during a flare in the corona.
[12] Field line shrinkage, or dipolarization, following solar

flares and substorms is an expected result of reconnection
[Forbes, 1996; Coroniti, 1985]. Using a two-dimensional
model of reconnection in solar flares, Lin [2004] found that
loops shrink dramatically in the early phase of their evolu-
tion, just after the reconnection occurs, and that loops

reconnected shortly after flare initiation will shrink more
than loops reconnected later in the event. The trajectories and
velocities of the loop tops in this model are shown in Figure 4.
Even though this model was originally designed for flares in
the corona, it does a reasonable job of qualitatively describing
dipolarization in the magnetosphere, and it is able to quan-
titatively predict dipolarization speeds as well; the loop top
speeds start at 100–200 km s�1 for loops that are formed at
4–6 � 104 km (i.e., 6–10 RE).
[13] Although the dipolarization process is similar in the

magnetosphere and the corona, differences in the geome-
tries of the two systems have effects that should be
mentioned. For example, in the magnetosphere, the mag-
netic field configuration can become far more stretched
before the initiation of a substorm than the coronal loops
formed in the course of a solar eruption; magnetospheric
field lines typically lose up to 80% of their initial height
during the dipolarization process, whereas loops in the
corona typically lose more like 20% of their initial height
[Forbes and Acton, 1996; Reeves et al., 2008]. Additionally,
dipolarizing magnetic field lines in the magnetosphere
eventually return to the dayside (whereas flare loops in
the corona have no such escape option), although this
process may not have a significant effect on the dynamics
of the dipolarization of the loops in the magnetosphere.
[14] Another similarity between the two systems mani-

fests at the footpoints of the dipolarizing loops. The geotail
field lines are anchored in the relatively cool, dense iono-
sphere in each hemisphere, as shown in Figure 1. Some of
the energy released in the reconnection process is converted
into accelerated electrons that generate the visible aurora at
both ends of the field line. The two ‘‘auroral ribbons’’ are
made visible by the nonthermal optical and UV auroral
emissions. The fraction of the energy released via recon-
nection that is deposited in the ionosphere by electron
precipitation and joule heating generates beams of iono-
spheric ions that flow up into the magnetosphere along
auroral field lines. These ions are accelerated via a multi-

Figure 3. An example of an observation of dipolarizing field lines in the magnetosphere, taken from the
study of Hughes [1988]. The figure shows magnetometer data from three spacecraft, spaced about 20
degrees apart. Dipolarization is indicated by an increase in the Bz component of the field.
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[24] Early models of bursty bulk flows in the magneto-
sphere concentrated on the effect of the interchange insta-
bility on a bubble of plasma with a lower entropy per unit
magnetic flux, PVg, than the surrounding plasma [Pontius
and Wolf, 1990; Chen and Wolf, 1993]. Here, P is the
plasma pressure along the field line, V is the volume per unit
magnetic flux, and g is the polytropic index. Other authors
have invoked intermittent or ‘‘patchy’’ reconnection, as in
the model of Semenov et al. [1992], to explain bursty bulk
flow events [Baumjohann et al., 1990; Sergeev et al., 1995;
Shay et al., 2003].
[25] Chen and Wolf [1999], building on the earlier work

of Pontius and Wolf [1990] and Chen and Wolf [1993],
found that the velocity of the flux tubes perpendicular to the
magnetic field is approximately the Alfvén speed and that
there is a slow mode shock propagating parallel to the
magnetic field. They also astutely point out that the bubble
model and the patchy reconnection model are not mutually
exclusive; bubbles could easily be formed by patchy recon-
nection events in the magnetotail. Patchy reconnection
events are studied in the context of the solar corona by
Linton and Longcope [2006], who use a thin flux tube
model to simulate reconnection and the formation of down-
ward moving flux tubes in the corona after a solar flare.
They find that the velocity of the flux tube is a significant
fraction (45–82%) of the Alfvén speed for low-b plasma
conditions such as those in the corona.
[26] The studies discussed above show that the Alfvén

speed is a determining factor in the behavior of systems
involving reconnection. Looking at the plasma parameters
given in Table 1, we see that the magnetosphere is an
environment with low magnetic field strengths and low
particle densities, while the densities and magnetic field
strengths are orders of magnitude higher in the corona of the
Sun. Nevertheless, the Alfvén speeds are similar in the two
regimes, and thus the speeds of bursty bulk flows and supra-
arcade downflows are similar. This observation leads to the
general conclusion that processes governed by the Alfvén
speed should exhibit similar behaviors in these two (and
possibly other) environments, while processes governed by
other factors may be very different.

4. Discussions and Conclusions

[27] We have shown that the time and spatial scales of
postreconnection phenomena in the solar corona and the
magnetosphere are similar to within an order of magnitude.
This result is surprising at first, owing to the very different
plasma environments that exist in the magnetosphere and
the corona. However, it turns out that the Alfvén speed is a
governing parameter for the speeds of bursty bulk flows in
the magnetosphere and the supra-arcade downflows in the
corona, and it happens that the Alfvén speeds are similar in
these two regimes.
[28] The similarities between the velocities, deceleration

profile and size scales of bursty bulk flow events and supra-
arcade downflows strongly suggest that these phenomena
are the same. This result is significant because it helps to
rule out alternate interpretations in one regime or the other.
For example, the supra-arcade downflows in the corona are
observed as a void whose extent grows down toward the
solar surface. It is possible that high velocities evacuate the

region by ejecting plasma upward (radially away from the
Sun), leaving a void whose lower tip is the region where the
acceleration begins. This interpretation would be consistent
with the velocity information derived from the spectroscopic
data and with the image data for these events. However,
since a similar phenomenon is observed in the magneto-
sphere, where plasma velocities can be measured and
verified to be flowing earthward, we can be more confident
that the interpretation of coronal plasma downflows is the
correct one. In this case, identification of the solar events
with the magnetospheric ones lends evidence to the idea that
there is a downward flow of plasma and fields in the coronal
case.
[29] Although the supra-arcade downflows observed in

the corona show striking similarities to the density-depleted
bubbles observed by Sergeev et al. [1996], some observa-
tions of BBFs in the magnetosphere show no density or
pressure depletions at all [Angelopoulos et al., 1992].
Recent models of the ‘‘bubbles’’ in the magnetosphere have
shown that depleted entropy per unit magnetic flux is a
necessary feature in order to accelerate the bubbles toward
the Earth [Birn et al., 2004]. This depletion can manifest in
the form of a reduction in the flux tube volume, so a
reduction in density is not a necessary condition for the
fast earthward flows to take place. If similar conditions
prevail on downflows in the corona, then it is possible that
not all downflows are density depleted in the corona as well.
For example, recent observations have found bright down-
flows in the corona after a filament eruption [Tripathi et al.,
2007]. More study is needed to understand these observa-
tions in light of what we know about supra-arcade down-
flows in the corona and bursty bulk flows in the
magnetosphere.
[30] Comparing these posteruption phenomena in the

magnetosphere and the corona can be illuminating because
the plasma regimes are so different, and conclusions that
seem valid in one environment can be shown to be false
when the same phenomenon is examined in another envi-
ronment. For example, calculations by M. S. Nakamura et
al. [2002] suggest that the size scale of bursty bulk flow
events in the magnetosphere is related to the ion inertial
length or the ion Larmor radius. They find that the mini-
mum size for the bubbles is on the order of 10–20 times the
ion inertial scale length, which works out to be about 3000–
6000 km (�0.5–1 RE), a reasonable size scale for these
events given the observations. In the corona, however, the
ion inertial length and the ion Larmor radius are on the order
of 1 m, much smaller than the observed size scale of the
supra-arcade downflows. Thus in the coronal case at least,
the ion inertial length cannot be the governing factor in the
size of the observed downflows. Some recent work [Lin et
al., 2007; Riley et al., 2007] suggests that the size scale of
the downflows in the corona is governed by the tearing
mode instability in the current sheet. However, the tearing
mode in the corona is resistive, while plasma in the geotail
is collisionless. Further work is needed to see if the
similarity in length scales is coincidental or governed by
similar physics. It is also possible that higher spatial
resolution coronal observations will reveal smaller-sized
downflows.
[31] In this paper we have compared posteruption phe-

nomena in the corona and the magnetosphere, two environ-
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ments with very different plasma properties. The motivation
for comparing these phenomena is to establish whether the
gross features of the plasma dynamics are universal. We
have seen in this paper the emergence of such a universal
process: the onset of reconnection associated with magnetic
reconfiguration in both the corona and magnetosphere has
similar consequences in both regimes. The posteruption
plasma dynamics in the two cases show remarkable simi-
larities and some marked differences that can be accounted
for by the plasma parameters in each environment. Thus, we
have shown that there are physical analogs between post-
eruptive phenomena in the magnetosphere and the corona
associated with magnetic reconnection in both plasma
environments.
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